A non-isothermal phase-field model for piezo–ferroelectric materials

2018 ◽  
Vol 31 (3) ◽  
pp. 741-750 ◽  
Author(s):  
A. Borrelli ◽  
D. Grandi ◽  
M. Fabrizio ◽  
M. C. Patria
Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2141
Author(s):  
Taegeon Kim ◽  
Changhwan Shin

Ferroelectric materials have received significant attention as next-generation materials for gates in transistors because of their negative differential capacitance. Emerging transistors, such as the negative capacitance field effect transistor (NCFET) and ferroelectric field-effect transistor (FeFET), are based on the use of ferroelectric materials. In this work, using a multidomain 3D phase field model (based on the time-dependent Ginzburg–Landau equation), we investigate the impact of the interface-trapped charge (Qit) on the transient negative capacitance in a ferroelectric capacitor (i.e., metal/Zr-HfO2/heavily doped Si) in series with a resistor. The simulation results show that the interface trap reinforces the effect of transient negative capacitance.


Aerospace ◽  
2005 ◽  
Author(s):  
T. Liu ◽  
C. S. Lynch

Ferroelectric materials exhibit spontaneous polarization and domain structures below the Curie temperature. In this study a cubic to tetragonal phase transformation and the evolution of domain structures in ferroelectric crystals are simulated by using the time-dependent Ginzburg-Landau equation. The effects of electric boundary conditions on the formation of domain patterns and field induced polarization switching are discussed. The phase field model is used to simulate the formation of domain structures, domain wall motion and the macroscopic response of ferroelectric materials under external fields.


2016 ◽  
Author(s):  
Larry Kenneth Aagesen ◽  
Daniel Schwen

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Min Yang ◽  
Lu Wang ◽  
Wentao Yan

AbstractA three-dimensional phase-field model is developed to simulate grain evolutions during powder-bed-fusion (PBF) additive manufacturing, while the physically-informed temperature profile is implemented from a thermal-fluid flow model. The phase-field model incorporates a nucleation model based on classical nucleation theory, as well as the initial grain structures of powder particles and substrate. The grain evolutions during the three-layer three-track PBF process are comprehensively reproduced, including grain nucleation and growth in molten pools, epitaxial growth from powder particles, substrate and previous tracks, grain re-melting and re-growth in overlapping zones, and grain coarsening in heat-affected zones. A validation experiment has been carried out, showing that the simulation results are consistent with the experimental results in the molten pool and grain morphologies. Furthermore, the grain refinement by adding nanoparticles is preliminarily reproduced and compared against the experimental result in literature.


Sign in / Sign up

Export Citation Format

Share Document