Equilibrium stability of nonlinear elastic sphere with distributed dislocations

2020 ◽  
Vol 32 (6) ◽  
pp. 1713-1725
Author(s):  
Evgeniya V. Goloveshkina ◽  
Leonid M. Zubov
Author(s):  
Evgeniya V. Goloveshkina

The phenomenon of stability loss of a hollow elastic sphere containing distributed dislocations and loaded with external hydrostatic pressure is studied. The study was carried out in the framework of the nonlinear elasticity theory and the continuum theory of continuously distributed dislocations. An exact statement and solution of the stability problem for a three-dimensional elastic body with distributed dislocations are given. The static problem of nonlinear elasticity theory for a body with distributed dislocations is reduced to a system of equations consisting of equilibrium equations, incompatibility equations with a given dislocation density tensor, and constitutive equations of the material. The unperturbed state is caused by external pressure and a spherically symmet-ric distribution of dislocations. For distributed edge dislocations in the framework of a harmonic (semi-linear) mate-rial model, the unperturbed state is defined as an exact spherically symmetric solution to a nonlinear boundary value problem. This solution is valid for any function that characterizes the density of edge dislocations. The perturbed equilibrium state is described by a boundary value problem linearized in the neighborhood of the equilibrium. The analysis of the axisymmetric buckling of the sphere was performed using the bifurcation method. It consists in determining the equilibrium positions of an elastic body, which differ little from the unperturbed state. By solving the linearized problem, the value of the external pressure at which the sphere first loses stability is found. The effect of dislocations on the buckling of thin and thick spherical shells is analyzed.


2020 ◽  
Vol 26 ◽  
pp. 121
Author(s):  
Dongbing Zha ◽  
Weimin Peng

For the Cauchy problem of nonlinear elastic wave equations for 3D isotropic, homogeneous and hyperelastic materials with null conditions, global existence of classical solutions with small initial data was proved in R. Agemi (Invent. Math. 142 (2000) 225–250) and T. C. Sideris (Ann. Math. 151 (2000) 849–874) independently. In this paper, we will give some remarks and an alternative proof for it. First, we give the explicit variational structure of nonlinear elastic waves. Thus we can identify whether materials satisfy the null condition by checking the stored energy function directly. Furthermore, by some careful analyses on the nonlinear structure, we show that the Helmholtz projection, which is usually considered to be ill-suited for nonlinear analysis, can be in fact used to show the global existence result. We also improve the amount of Sobolev regularity of initial data, which seems optimal in the framework of classical solutions.


2017 ◽  
Vol 45 (1) ◽  
pp. 71-84 ◽  
Author(s):  
Alexey Mazin ◽  
Alexander Kapustin ◽  
Mikhail Soloviev ◽  
Alexander Karanets

ABSTRACT Numerical simulation based on finite element analysis is now widely used during the design optimization of tires, thereby drastically reducing the time investment in the design process and improving tire performance because it is obtained from the optimized solution. Rubber material models that are used in numerical calculations of stress–strain distributions are nonlinear and may include several parameters. The relations of these parameters with rubber formulations are usually unknown, so the designer has no information on whether the optimal set of parameters is reachable by the rubber technological possibilities. The aim of this work was to develop such relations. The most common approach to derive the equation of the state of rubber is based on the expansion of the strain energy in a series of invariants of the strain tensor. Here, we show that this approach has several drawbacks, one of which is problems that arise when trying to build on its basis the quantitative relations between the rubber composition and its properties. An alternative is to use a series expansion in orthogonal functions, thereby ensuring the linear independence of the coefficients of elasticity in evaluation of the experimental data and the possibility of constructing continuous maps of “the composition to the property.” In the case of orthogonal Legendre polynomials, the technique for constructing such maps is considered, and a set of empirical functions is proposed to adequately describe the dependence of the parameters of nonlinear elastic properties of general-purpose rubbers on the content of the main ingredients. The calculated sets of parameters were used in numerical tire simulations including static loading, footprint analysis, braking/acceleration, and cornering and also in design optimization procedures.


Sign in / Sign up

Export Citation Format

Share Document