scholarly journals Evolutionary engineering design synthesis of on-board traffic monitoring sensors

2008 ◽  
Vol 19 (2-3) ◽  
pp. 113-125 ◽  
Author(s):  
Yizhen Zhang ◽  
Erik K. Antonsson ◽  
Alcherio Martinoli
Author(s):  
Julian R. Eichhoff ◽  
Felix Baumann ◽  
Dieter Roller

In this paper we demonstrate and compare two complementary approaches to the automatic generation of production rules from a set of given graphs representing sample designs. The first approach generates a complete rule set from scratch by means of frequent subgraph discovery. Whereas the second approach is intended to learn additional rules that fit an existing, yet incomplete, rule set using genetic programming. Both approaches have been developed and tested in the context of an application for automated conceptual engineering design, more specifically functional decomposition. They can be considered feasible, complementary approaches to the automatic inference of graph rewriting rules for conceptual design applications.


Author(s):  
Stephen C.-Y. Lu ◽  
Satish T. S. Bukkapatnam ◽  
Ping Ge ◽  
Nanxin Wang

Abstract Design efficiency and robustness at early stage of parametric engineering design play a critical role in reducing cycle time and improving product quality in the overall product development process. Usually, the “forward mapping” approach, is used to find designs, where the desirable performances are satisfied through large iterations of analysis and evaluation from design space to performance space. However, these approaches are time-consuming and involve blind search if the engineering system simulation models and/or initial conditions are not appropriately selected. On the other hand, common “reverse engineering” methods use domain-specific assumptions and are not effective in generic scenarios where the presumed conditions are violated. In this paper, a Backward Mapping Methodology for Design Synthesis (BMDS) is presented that can help conduct design synthesis rapidly and robustly at early stage of parametric engineering design. BMDS is a surrogate model-based approach that combines the strengths of metamodeling and statistics. It can help designers explicitly identify the robust design solutions that satisfy the designer-specified performance requirements through a “backward mapping” from the performance space directly to the design space. Preliminary case studies show its effectiveness and potential to be used as a generic early stage parametric design synthesis methodology in the future.


2013 ◽  
Vol 460 ◽  
pp. 73-80 ◽  
Author(s):  
Jaroslav Šeminský

Paper is focused to the development in designing of technical systems and present methodology approaches. For a long time, engineering design research has been focused on the development of various design theories, methodologies, methods, tools, and procedures. Engineers to more efficiently design artefacts have subsequently used that design methods. However, as the artefacts have grown in complexity, the need for new methods has become obvious. Also, in a nowadays world, increased competition and globalisation require organizations to re-examine traditional product development strategies. While the difficulties in design synthesis are caused by a wide variety of issues, the complicatedness under problem size is so essential that it make procedural design knowledge insufficient to generate superior design solutions.


Author(s):  
Amaresh Chakrabarti ◽  
Kristina Shea ◽  
Robert Stone ◽  
Jonathan Cagan ◽  
Matthew Campbell ◽  
...  

One of the hallmarks of engineering design is the design synthesis phase where the creativity of the designer most prominently comes into play as solutions are generated to meet underlying needs. Over the past decades, methodologies for generating concepts and design solutions have matured to the point that computation-based synthesis provides a means to explore a wider variety of solutions and take over more tedious design tasks. This paper reviews advances in function-based, grammar-based, and analogy-based synthesis approaches and their contributions to computational design synthesis research in the last decade.


Author(s):  
Mary Lou Maher

The knowledge used in the design of engineering systems includes: understanding systems and their components, and the understanding implications of design decisions on other decisions and further problem decomposition This paper presents design as a process and then characterizes the knowledge used in synthesizing design alternatives. A knowledge based approach to design synthesis is proposed, followed by a description of the implementation of a domain independent synthesis framework. The implementation is further illustrated by an example application to structural design.


Sign in / Sign up

Export Citation Format

Share Document