Present Trends in Designing of Technical Systems

2013 ◽  
Vol 460 ◽  
pp. 73-80 ◽  
Author(s):  
Jaroslav Šeminský

Paper is focused to the development in designing of technical systems and present methodology approaches. For a long time, engineering design research has been focused on the development of various design theories, methodologies, methods, tools, and procedures. Engineers to more efficiently design artefacts have subsequently used that design methods. However, as the artefacts have grown in complexity, the need for new methods has become obvious. Also, in a nowadays world, increased competition and globalisation require organizations to re-examine traditional product development strategies. While the difficulties in design synthesis are caused by a wide variety of issues, the complicatedness under problem size is so essential that it make procedural design knowledge insufficient to generate superior design solutions.

2021 ◽  
Vol 1 ◽  
pp. 1303-1312
Author(s):  
Ricardo Real ◽  
Chris Snider ◽  
Mark Goudswaard ◽  
Ben Hicks

AbstractWhilst prior works have characterised the affordances of prototyping methods in terms of generating knowledge about a product or process, the types, or ‘dimensions’ of knowledge towards which they contribute are not fully understood. In this paper we adapt the concept of ‘design domains’ as a method to interpret, and better understand the contributions of different prototyping methods to design knowledge in new product development. We first synthesise a set of ten dimensions for design knowledge from a review of literature in design-related fields. A study was then conducted in which participants from engineering backgrounds completed a Likert-type questionnaire to quantify the perceived contributions to design knowledge of 90 common prototyping methods against each dimension. We statistically analyse results to identify patterns in the knowledge contribution of different methods. Results reveal that methods exhibit significantly different contribution profiles, suggesting different methods to be suited to different knowledge. Thus, this paper indicates potential for new methods, methodology and processes to leverage such characterisations for better selection and sequencing of methods in the prototyping process.


Author(s):  
Tomasz Arciszewski

Abstract The paper provides a brief review of general tendencies and interesting developments in the area of engineering design theory and methodology in Eastern Europe. This review is limited to East Germany, Poland, and the Soviet Union. Particular attention was given to the design research environments in individual countries, and to developed design theories and methods in the context of these environments.


Author(s):  
W. Ernst Eder

‘Design’ can be a noun, or a verb. Six paths for research into engineering design (as verb) are identified, they must be co-ordinated for internal consistency and plausibility. Design Research tries to clarify design processes and their underlying theories – designing in general, and particular forms, e.g. design engineering. Theories are a basis for deriving theory- based design methods. Design engineering and artistic forms of designing, industrial design, have much in common, but also differences. For an attractive and user-friendly product, its form (observable shape) is important – a task for industrial designers, architects, etc. ‘Conceptualizing’ consists of preliminary sketches, a direct entry to hardware – industrial designers work ‘outside inwards’. For a product that should work and fulfill a purpose, perform a transformation process, its functioning and operation are important – a task for engineering designers. Anticipating and analyzing a capability for operation is a role of the engineering sciences. The outcome of design engineering is a set of manufacturing instructions, and analytical verification of anticipated performance. Design engineering is more constrained than industrial design, but in contrast has available a theory of technical systems and its associated engineering design science, with several abstract models and representations of structures. Engineering designers tend to be primary for technical systems, and their operational and manufacturing processes – they work ‘inside outwards’. Hubka’s theory, and consequently design metho- dology, includes consideration of tasks of a technical system, typical life cycle, duty cycle, classes of properties (and requirements), mode of action, development in time, and other items of interest for engineering design processes. Hubka’s methodology is demonstrated by several case examples.


Author(s):  
Martin Dzbor ◽  
Zdenek Zdrahal

Abstract Engineering design is a knowledge-intensive process driven by various design objectives. Design is an iterative process where the objectives evolve together with the solutions in order to deliver an artefact with the desired properties and functions. Many design theories developed so far suggest more or less efficient ways for finding a suitable solution to the given goals. However, they often leave open the issue of ‘solution talkback’. Discovery of new design objectives and amendment of the existing ones is as important as the development of design solutions. The biggest issue with solution talkback is the presence of tacit knowledge in addition to the explicit one. This paper draws on a theory that incorporates some typical features of design problems, and transfers theoretical findings about reflection on the design actions to a tool for acquisition of design knowledge. First, key terms are defined and theoretical framework is introduced. Afterwards we look at the means for capturing explicit and tacit design knowledge more in depth.


2000 ◽  
Author(s):  
Zbigniew M. Bzymek

Abstract Brief Theory of Inventive Problems Solving (BTIPS) is a compact and somewhat simplified and changed version of TIPS (Theory of Inventive Problems Solving). BTIPS is as effective as TIPS, but easier to learn and apply. Designed to support the most uncontrollable phase of design “creative design synthesis” [12], it provides a handy tool for industry. The purpose of this presentation, which includes explanations, notes and examples, is to provide a stepping stone toward making the method more commonly available to industry and academia. Brief TIPS (BTIPS) is based on Altshuller’s TRIZ (Teoria Reshenia Izobretatielnyh Zadatch), Invention Machine’s research team contributions and the author’s experience in practical design, design research, consulting and teaching of engineering design. The basic algorithm in BTIPS is shorter than in TRIZ; the list of Principles is somewhat changed; some Effects are added - some skipped; and, Prediction of systems interactions is simplified. BTIPS may be used with or without a computer. If used with a computer, Invention Machine v.2.1 for Windows or TechOptimizer would be very useful packages. This presentation should be treated as a companion paper to reference [3].


2021 ◽  
Vol 1 ◽  
pp. 3169-3178
Author(s):  
Chris McMahon ◽  
Claudia Eckert ◽  
Georges Fadel

AbstractThis paper is an invitation to a debate on the positioning of engineering design as a field of research. The paper lists a multiplicity of interpretations of design, questioning whether they are sufficient to describe engineering design in all its variety. Following a critical analysis of attempts to describe design's unique characteristics, and observations on the nature of design made from outside of the design research community, it presents a list of situations of design that the authors have observed in engineering practice, describing especially the relationship between design, technology and society. The paper then explores what these situations imply about the questions researchers should ask about the nature of design knowledge and expertise, and examines how the different situations might be categorised, before exploring the positioning of engineering design research with respect to other academic disciplines, in particular management and the human and earth sciences. The paper concludes with a call to a debate on the nature of engineering design with the aim to define this field more clearly to ourselves and to others.


Author(s):  
Ricardo Real

Whilst prior works have characterised the affordances of prototyping methods in terms of generating knowledge about a product or process, the types, or ‘dimensions’ of knowledge towards which they contribute are not fully understood. In this paper we adapt the concept of ‘design domains’ as a method to interpret, and better understand the contributions of different prototyping methods to design knowledge in new product development. We first synthesise a set of ten dimensions for design knowledge from a review of literature in design-related fields. A study was then conducted in which participants from engineering backgrounds completed a Likert-type questionnaire to quantify the perceived contributions to design knowledge of 90 common prototyping methods against each dimension. We statistically analyse results to identify patterns in the knowledge contributions of different methods. Results reveal that methods exhibit significantly different contribution profiles, suggesting different methods to be suited to different knowledge generation. Thus, this paper indicates potential for new methods, methodology and processes to leverage such characterisations for better selection and sequencing of methods in the prototyping process.


10.14311/434 ◽  
2003 ◽  
Vol 43 (3) ◽  
Author(s):  
I. Horváth

Engineering design research manifests as a platform for exploration, description, arrangement, rationalization, and application of design knowledge. What we can see when we are looking at the research into engineering design is an almost chaotically fragmented picture. Is it possible to have a holistic view on the contents and internal relationships of engineering design research? This paper considers teleology, a reflection of a branch of philosophical speculations, as the doctrine of ordering knowledge of engineering design and structuring engineering design research accordingly. Teleology explains that the ultimate reason behind design is to sustain human existence and well being by virtual creation of artifacts and services for society. To this end, knowledge of engineering research is supposed to be transferred from the platform of scientific/theoretical exploration and comprehension to the platform of technical/pragmatic application. This implies a natural streaming of knowledge of engineering design. In order to make the teleological explanation operational, a framework of reasoning has been constructed by adopting the analogy of the source, channel and sink of a stream. To represent the source, channel and sink categories of engineering design knowledge, the author inaugurated nine categories in the framework. It has been hypothesized that the introduced categories are equally valid for research in engineering design as well as for the knowledge of engineering design. Within each category, research domains and trajectories have been defined. The proposed teleology-based framework lends itself to a better understanding of the disciplinary articulation and intrinsic relationships of engineering design research. It is hoped, among other things, to form a basis for a shared understanding, to make the influence of decisions on research programs more transparent, as well as to facilitate organizing subject materials for various design courses.


Author(s):  
Tetsuo Tomiyama

Abstract This paper describes the historical development and the current situation of engineering design research in Japan. It reviews Japanese design theories and methodologies of significant importance in mechanical engineering. Future directions are also discussed.


Sign in / Sign up

Export Citation Format

Share Document