Experimental study of the effect of tool orientation in five-axis micro-milling of brass using ball-end mills

2012 ◽  
Vol 67 (5-8) ◽  
pp. 1079-1089 ◽  
Author(s):  
M. Javad Barakchi Fard ◽  
Evgueni V. Bordatchev
2011 ◽  
Vol 54 (5) ◽  
pp. 1193-1205 ◽  
Author(s):  
FuGui Xie ◽  
XinJun Liu ◽  
Hui Zhang ◽  
JinSong Wang

Author(s):  
Barnabás Zoltán Balázs ◽  
Márton Takács

Micro-milling is one of the most essential technologies to produce micro components, but due to the size effect, it has many special characteristics and challenges. The process can be characterised by strong vibrations, relatively large run-out and tool deformation, which directly affects the quality of the machined surface. This paper deals with a detailed investigation of the influence of cutting parameters on surface roughness and on the special characteristics of micro-milled surfaces. Several systematic series of experiments were carried out and analysed in detail. A five-axis micromachining centre and a two fluted, coated carbide micro-milling tool with a diameter of 500 µm were used for the tests. The experiments were conducted on AISI H13 hot-work tool steel and Böhler M303 martensitic corrosion resistance steel with a hardness of 50 HRC in order to gain relevant information of machining characteristics of potential materials of micro-injection moulding tools. The effect of the cutting parameters on the surface quality and on the ratio of Rz/ Ra was investigated in a comprehensive cutting parameter range. ANOVA was used for the statistical evaluation. A novel method is presented, which allows a detailed analysis of the surface profile and repetitions, and identify the frequencies that create the characteristic profile of the surface. The procedure establishes a connection between the frequencies obtained during the analysis of dynamics (forces, vibrations) of the micro-milling process and the characterising repetitions and frequencies of the surface.


2018 ◽  
Vol 108 (05) ◽  
pp. 353-358
Author(s):  
E. Abele ◽  
F. Ali ◽  
M. Berger

Aus Schwerzerspanung und Turbinenschaufelfertigung ist bekannt, dass Werkzeuge aus dem Spannfutter ausgezogen werden. Die veränderte Werkzeugposition führt zur Abweichung von den vorgegebenen Toleranzen und einer geringeren Fertigungsqualität oder Beschädigung des Werkstücks. Der Artikel untersucht das Auszugsverhalten verschiedener Spannfutter. Mit einem Prüfstand können die Einflüsse der mechanischen Belastung und der Klemmlänge auf die Haltekraft im Pressverband betrachtet und die Wirkmechanismen beim Auszug des Werkzeuges aus dem Spannfutter sensorisch ermittelt werden.   From heavy-duty cutting and turbine blade manufacturing it is known that tools pull out from chucks. A change in tool position leads to deviations from tolerance and decreases manufacturing quality or damages the workpiece. This article explores the extension behavior of different chucks on a specifically designed test bench. This allows determining how mechanical load and clamping length influence the holding force in the press fit and what mechanisms of action affect the extraction of the tool from the chuck.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 568 ◽  
Author(s):  
Zhiqiang Liang ◽  
Peng Gao ◽  
Xibin Wang ◽  
Shidi Li ◽  
Tianfeng Zhou ◽  
...  

Tool wear is a significant issue for the application of micro end mills. This can be significantly improved by coating materials on tool surfaces. This paper investigates the effects of different coating materials on tool wear in the micro milling of Ti-6Al-4V. A series of cutting experiments were conducted. The tool wear and workpiece surface morphology were investigated by analyzing the wear of the end flank surface and the total cutting edge. It was found that, without coating, serious tool wear and breakage occurred easily during milling. However, AlTiN-based and AlCrN-based coatings could highly reduce cutting edge chipping and flank wear. Specifically, The AlCrN-based coated mill presented less fracture resistance. For TiN coated micro end mill, only slight cutting edge chipping occurred. Compared with other types of tools, the AlTiN-based coated micro end mill could maximize tool life, bringing about an integrated cutting edges with the smallest surface roughness. In short, the AlTiN-based coating material is recommended for the micro end mill in the machining of Ti-6Al-4V.


2017 ◽  
Vol 92 (9-12) ◽  
pp. 3615-3625 ◽  
Author(s):  
Rufeng Xu ◽  
Xiang Cheng ◽  
Guangming Zheng ◽  
Zhitong Chen

Author(s):  
Ken-Han Chen ◽  
Ming-Chyuan Lu ◽  
Chia-Che Wu ◽  
Kuan-Ming Li ◽  
Yao-Yang Tsai

2019 ◽  
Vol 14 (2) ◽  
pp. 161
Author(s):  
Xiaonan Pu ◽  
Xu Liu ◽  
Sisheng Yang ◽  
Xiang Ling

Sign in / Sign up

Export Citation Format

Share Document