Cutting force prediction and analytical solution of regenerative chatter stability for helical milling operation

2014 ◽  
Vol 73 (1-4) ◽  
pp. 433-442 ◽  
Author(s):  
Zhongqun Li ◽  
Qiang Liu ◽  
Xingzu Ming ◽  
Xin Wang ◽  
Yafeng Dong
2020 ◽  
Vol 111 (11-12) ◽  
pp. 3207-3224
Author(s):  
Mengrui Shi ◽  
Xuda Qin ◽  
Hao Li ◽  
Shuai Shang ◽  
Yan Jin ◽  
...  

Author(s):  
Kazuki Kaneko ◽  
Isamu Nishida ◽  
Ryuta Sato ◽  
Keiichi Shirase

Abstract Several methods have been proposed to detect tool wear in milling operation using AE (Acoustic Emission) signals or cutting force signals. However, these methods require additional sensors such as an AE sensor or a dynamometer, which incurs additional costs. For this reason, a simple tool life estimation method based on machining time is used. In this study, a sensor-less tool wear estimation method is proposed. In this method, the parameters required for the cutting force prediction are identified continuously from the spindle motor torque signal, which can be monitored within the computer numerical controlled (CNC) machine. The tool wear progress can be estimated by the continuous change in the identified parameters during milling operation. To identify the parameters continuously, a real-time virtual milling simulation is performed in parallel with a physical milling operation. In the experimental results, it was confirmed that the identified parameter corresponding to the edge force component has linear relationship with the flank wear width of cutting edge. Thus the flank wear can be estimated without any additional sensor.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 326
Author(s):  
Lan Zhang ◽  
Xianbin Sha ◽  
Ming Liu ◽  
Liquan Wang ◽  
Yongyin Pang

In the field of underwater emergency maintenance, submarine pipeline cutting is generally performed by a diamond wire saw. The process, in essence, involves diamond grits distributed on the surface of the beads cutting X56 pipeline steel bit by bit at high speed. To find the effect of the different parameters (cutting speed, coefficient of friction and depth of cut) on cutting force, the finite element (FEA) method and response surface method (RSM) were adopted to obtain cutting force prediction models. The former was based on 64 simulations; the latter was designed according to DoE (Design of Experiments). Confirmation experiments were executed to validate the regression models. The results indicate that most of the prediction errors were within 10%, which were acceptable in engineering. Based on variance analyses of the RSM models, it could be concluded that the depth of the cut played the most important role in determining the cutting force and coefficient the of friction was less influential. Despite making little direct contribution to the cutting force, the cutting speed is not supposed to be high for reducing the coefficient of friction. The cutting force models are instructive in manufacturing the diamond beads by determining the protrusion height of the diamond grits and the future planning of the cutting parameters.


2017 ◽  
Vol 11 (6) ◽  
pp. 958-963
Author(s):  
Koji Teramoto ◽  
◽  
Takahiro Kunishima ◽  
Hiroki Matsumoto

Elastomer end-milling is attracting attention for its role in the small-lot production of elastomeric parts. In order to apply end-milling to the production of elastomeric parts, it is important that the workpiece be held stably to avoid deformation. To evaluate the stability of workholding, it is necessary to predict cutting forces in elastomer end-milling. Cutting force prediction for metal workpiece end-milling has been investigated for many years, and many process models for end-milling have been proposed. However, the applicability of these models to elastomer end-milling has not been discussed. In this paper, the characteristics of the cutting force in elastomer end-milling are evaluated experimentally. A standard cutting force model and its parameter identification method are introduced. By using this cutting force model, measured cutting forces are compared against the calculated results. The comparison makes it clear that the standard cutting force model for metal end-milling can be applied to down milling for a rough evaluation.


Sign in / Sign up

Export Citation Format

Share Document