An approach to evaluate delamination factor when drilling carbon fiber-reinforced plastics using different drill geometries: experiment and finite element study

2017 ◽  
Vol 93 (9-12) ◽  
pp. 4043-4061 ◽  
Author(s):  
Sinan Al-wandi ◽  
Songlin Ding ◽  
John Mo
2016 ◽  
Vol 51 (8) ◽  
pp. 1031-1043 ◽  
Author(s):  
Danlong Song ◽  
Kaifu Zhang ◽  
Yuan Li ◽  
Ping Liu ◽  
Xiaoye Yan ◽  
...  

The interference-fit joint of composite laminates is widely used in assembly of thin-walled components in aviation product, but the interference percentage has a significant effect on squeezed damage which may reduce structural reliability. An investigation is conducted into the in-plane stress distribution and initial damage mechanism of symmetrical carbon fiber reinforced plastics laminates during the interference-fit bolt installation process. Considering the elastic deformation of the bolt, a general stress distribution model around the interference-fit joint is established with complex potential method. The initial damage mechanism of carbon fiber reinforced plastics laminates is characterized and critical interference percentages without damage are obtained with the mixed damage criteria. The effects of ply orientation and interference percentage on damage mechanism of each individual layer are discussed. Then, extensive finite element models with USDFLD subroutine of interference fit process are used to analyze and simulate the stress distribution and squeezed damage which are validated by strain measurement and micrographs by experiments subsequently. It is observed that theoretical solutions fall within the finite element results. The matrix tensile damage occurs first, and the critical interference percentages decrease from 1.10% to 0.85% with bolt diameters varying from 4 to 10 mm.


2013 ◽  
Vol 690-693 ◽  
pp. 2519-2522
Author(s):  
Zhi Hua Sha ◽  
Fang Wang ◽  
Sheng Fang Zhang

Carbon fiber reinforced plastics are widely used in aerospace and aircraft industries because of their remarkable advantages such as lightweight and high strength. However, as their properties are different with metals, those materials are difficult to machine in conventional ways, the machining defects may appear and the machining accuracy and surface quality are difficult to guarantee. Oriented to drilling of carbon fiber reinforce plastics, a machining model based on finite element method are presented in this paper, the drilling simulation of carbon fiber reinforced plastics using Deform-3D are realized, and the factors which influence the machining quality of the hole are analyzed in-depth. It shows the simulation results are accord with the results from the literatures and experiments and can used as evidence in drilling parameters optimizing and drilling quality improving.


2018 ◽  
Vol 792 ◽  
pp. 173-178
Author(s):  
Qiang Wang ◽  
Yong Bo Wu ◽  
Dong Lu ◽  
Teruo Bitoh ◽  
Ming Feng

Carbon fiber reinforced plastics (CFRP) has been widely used in various aircraft structural components. However, it is difficult for conventional methods such as drilling and helical milling to meet the requirements on high quality and efficient holes creation. Hence a so-called tilt helical milling (THM) method has been proposed. This new method is performed by replacing the revolving motion of the tool in conventional helical milling (CHM) with a conical pendulum motion, in which the tool axis is tilted towards the hole axis at a certain angle. As a step toward the establishment of the new method, in this work, the fundamental drilling characteristics of CFRP by the THM is elucidated by experimentally investigating the effects of tilt angle on thrust force and delamination factor. The obtained experimental results demonstrated that thrust force and delamination factor can be reduced with THM technique. In addition, THM can achieve better hole surface finish than CHM.


2021 ◽  
pp. 28-37
Author(s):  
P. N. Shkatov ◽  
G. A. Didin ◽  
A. A. Ermolaev

The paper is concerned with increasing sensitivity of eddy current nondestructive testing of most dangerous delamination in carbon-fiber reinforced plastics (CFRP). Increased sensitivity is achieved by separate registration and comparison of eddy current signals obtained from a set of stratifications of carbon fibers with the same orientation. The separation of eddy current signals is possible due to pronounced anisotropy of the electrical conductivity of the layers dominant in the direction of the fibers of the corresponding layer. Eddy-current signals are registered by eddy current probes with maximum sensitivity in a given angular direction. Prior to the scan eddy current signals of the probe are leveled on a defect-free area. The influence of the working gap on the difference between the eddy current signals of the probe is suppressed by normalizing it according to one of the signals. The analysis of the registered signals from delamination has been performed using an approximate calculation model. The reliability of the obtained results has been confirmed by comparison with experimental results and calculations using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document