edge trimming
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 29)

H-INDEX

10
(FIVE YEARS 3)

Author(s):  
Ryan Khawarizmi ◽  
Mohammad Sayem Bin Abdullah ◽  
Yinyin Han ◽  
Dave Kim ◽  
Patrick Kwon

Abstract Carbon fiber reinforced plastics (CFRP) composites are difficult-to-machine materials due to extensive tool wear. This paper investigates the impact of carbon fiber types on tool wear in edge-trimming CFRPs, each with particular ply angle of 0°, 45°, 90°, or 135°, using uncoated tungsten carbide endmills at the high spindle speed of 6000 rpm and the constant feed of 0.0508 mm/rev. Three distinct types of carbon fiber tows, including T300 as standard modulus (SM), IM-7 as intermediate modulus (IM), and K13312 as high modulus (HM), have been vacuum infused into CFRP laminates and edge-trimmed to investigate wear characteristics. Three wear criteria measured are flank wear, edge rounding radii, and worn area. The results show that tool wear is influenced by carbon fiber properties, such as fiber tensile strength, tensile modulus, and fiber microstructure. Overall, intermediate modulus carbon fibers with the highest tensile strength produced the most extensive tool wear due to brushing effects by abrasive carbon fibers. Out of four fiber directions, the largest tool wear was obtained from the 45° angle, while the lowest tool wear occurred in the 0° angle.


2021 ◽  
Vol 11 (19) ◽  
pp. 8865
Author(s):  
Andrey A. Radionov ◽  
Vadim R. Gasiyarov ◽  
Alexander S. Karandaev ◽  
Boris M. Loginov ◽  
Vadim R. Khramshin

The quality of steelwork products depends on the geometric precision of flat products. Heavy-plate rolling mills produce plates for large-diameter pipes and for use in shipbuilding, mechanical engineering, and construction. This is why the precision requirements are so stringent. Today’s Mills 5000 produce flat products of up to 5 m in width; the operation of these units shows ‘camber’ defects and axial shift of the roll at the stand exit point. This induces greater loss of metal due to edge trimming and involves a higher risk of accidents. These defects mainly occur due to the asymmetry in the roll gap, which is in turn caused by their misalignment in rolling. As a result, the feed varies in gauge, and the strip moves unevenly. The paper’s key contribution consists in theoretical and experimental substantiation and development of a set of control methods intended to address roll-gap asymmetry. The methods effectively compensate for the asymmetry resulting from the “inherited” wedge, which preexists before the strip enters the stand. They also compensate for the “ongoing” roll misalignment that is caused by the difference in force on the opposite side of the stand during rolling. This comprehensive approach to addressing camber and axial displacement of the feed has not been found in other sources. This paper presents a RAC controller connection diagram that ensures that the roll gap is even across the feed. The paper notes the shortcomings of the design configuration of the controller and shows how it could be improved. The authors have developed a predictive roll-gap asymmetry adjustment method that compensates for the deviations in gauge during the inter-passage pauses. They have also developed a method to control gap misalignment during rolling. The paper showcases the feasibility of a proportional-derivative RAC. The methods have been tested by mathematical modeling and experimentally. The paper further shows oscillograms sampled at Mill 5000 after implementing the developed solutions. Tests confirm far better precision of the screw-down mechanisms on the opposite sides of the stand. This reduces the variation in gauge across the feed and thus curbs the camber defect. As a result, the geometry of the flat improves, and less metal is lost in trimming. The paper further discusses how the RAC controller interacts with the automatic gauge control system. The conclusion is that these systems do not interfere with each other. The developed systems have proceeded to pilot testing.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1408 ◽  
Author(s):  
Bin Huang ◽  
Guitao Zeng ◽  
Bo Qian ◽  
Peng Wu ◽  
Peili Shi ◽  
...  

The pressure fluctuation inside centrifugal pumps is one of the main causes of hydro-induced vibration, especially at the blade-passing frequency and its harmonics. This paper investigates the feature of blade-passing frequency excitation in a low-specific-speed centrifugal pump in the perspective of local Euler head distribution based on CFD analysis. Meanwhile, the relation between local Euler head distribution and pressure fluctuation amplitude is observed and used to explain the mechanism of intensive pressure fluctuation. The impeller blade with ordinary trailing edge profile, which is the prototype impeller in this study, usually induces wake shedding near the impeller outlet, making the energy distribution less uniform. Because of this, the method of reducing pressure fluctuation by means of improving Euler head distribution uniformity by modifying the impeller blade trailing edge profile is proposed. The impeller blade trailing edges are trimmed in different scales, which are marked as model A, B, and C. As a result of trailing edge trimming, the impeller outlet angles at the pressure side of the prototype of model A, B, and C are 21, 18, 15, and 12 degrees, respectively. The differences in Euler head distribution and pressure fluctuation between the model impellers at nominal flow rate are investigated and analyzed. Experimental verification is also conducted to validate the CFD results. The results show that the blade trailing edge profiling on the pressure side can help reduce pressure fluctuation. The uniformity of Euler head circumferential distribution, which is directly related to the intensity of pressure fluctuation, is improved because the impeller blade outlet angle on the pressure side decreases and thus the velocity components are adjusted when the blade trailing edge profile is modified. The results of the investigation demonstrate that blade trailing edge profiling can be used in the vibration reduction of low specific impellers and in the engineering design of centrifugal pumps.


Author(s):  
Ryan Khawarizmi ◽  
Patrick Kwon ◽  
Mohammad Sayem Bin Abdullah ◽  
Yinyin Han ◽  
Dave Kim

Abstract Although carbon fiber reinforced plastics (CFRP) materials are widely used in high-strength and low-weight applications such as aerospace, defense, and automotive industries, they are one of the difficult-to-machine materials due to extensive tool wear. This paper investigates the impact of carbon fiber types on tool wear in edge-trimming CFRPs, each with particular ply angle of 0°, 45°, 90°, or 135°, using uncoated tungsten carbide endmills at a high spindle speed of 6000 rpm and a constant feed of 0.0508 mm/rev. Three distinct types of carbon fiber tows, including T300 as standard modulus (SM), IM-7 as intermediate modulus (IM), and K13312 as high modulus (HM), have been vacuum infused into CFRP laminates and edge-trimmed to investigate wear characteristics. Three wear criteria measured are flank wear, edge rounding radii, and worn area. The results show that tool wear is influenced by carbon fiber properties, such as fiber tensile strength, tensile modulus, and fiber microstructure. Overall, Intermediate modulus carbon fibers with the highest tensile strength produced the largest tool wear due to brushing effects by abrasive carbon fibers. Out of four fiber directions, the largest tool wear was obtained from the 45° angle while the lowest tool wear occurred in the 0° angle.


2021 ◽  
Vol 11 (11) ◽  
pp. 4743
Author(s):  
Fernando Cepero-Mejias ◽  
Nicolas Duboust ◽  
Vaibhav A. Phadnis ◽  
Kevin Kerrigan ◽  
Jose L. Curiel-Sosa

Nowadays, the development of robust finite element models is vital to research cost-effectively the optimal cutting parameters of a composite machining process. However, various factors, such as the high computational cost or the complicated nature of the interaction between the workpiece and the cutting tool significantly hinder the modelling of these types of processes. For these reasons, the numerical study of common machining operations, especially in composite machining, is still minimal. This paper presents a novel approach comprising a mixed multidirectional composite damage mode with composite edge trimming operation. An ingenious finite element framework which infer the cutting edge tool wear assessing the incremental change of the machining forces is developed. This information is essential to replace tool inserts before the tool wear could cause severe damage in the machined parts. Two unidirectional carbon fibre specimens with fibre orientations of 45∘ and 90∘ manufactured by pre-preg layup and cured in an autoclave were tested. Excellent machining force predictions were obtained with errors below 10% from the experimental trials. A consistent 2D FE composite damage model previously performed in composite machining was implemented to mimic the material failure during the machining process. The simulation of the spring back effect was shown to notably increase the accuracy of the numerical predictions in comparison to similar investigations. Global cutting forces simulated were analysed together with the cutting tool tooth forces to extract interesting conclusions regarding the forces received by the spindle axis and the cutting tool tooth, respectively. In general terms, vertical and normal forces steadily increase with tool wear, while tangential to the cutting tool, tooth and horizontal machining forces do not undergo a notable variation.


2021 ◽  
Vol 5 (5) ◽  
pp. 137
Author(s):  
Arquimedes Castillo-Morales ◽  
Xavier Rimpault ◽  
Jean-François Chatelain ◽  
Gilbert Lebrun

Carbon Fiber-Reinforced Plastic (CFRP) and Titanium alloy (Ti6Al4V) stacks are used extensively in the modern aerospace industry thanks to their outstanding mechanical properties and resistance to thermal load applications. Machining the CFRP/Ti6Al4V stack is a challenge and is complicated by the differences in each constituent materials’ machinability. The difficulty arises from the matrix degradation of the CFRP material caused by the heat generated during the machining process, which is a consequence of the low thermal conductivity of Ti6Al4V material. In most cases, CFRP and Ti6Al4V materials are stacked and secured together using rivets or bolts. This results in extra weight, while the drilling process required for such an assembly may damage the CFRP material. To overcome these issues, some applications employ an assembly that is free of bolts or rivets, and which uses adhesives or an adapted curing process to bond both materials together. The present research analyzes a thermal distribution and its effect on quality during the edge trimming process of a CFRP/Ti6Al4V stack assembly. Different types of tools and cutting parameters are compared using thermocouples embedded within the material and others on the tool cutting edge. In contrast to previous studies, the feed rate was the most significant factor affecting the cutting temperature and quality of the workpiece, while the cutting speed had no significant impact. The temperature in the workpiece increases as the feed per tooth decreases.


Sign in / Sign up

Export Citation Format

Share Document