Hot forging process design, microstructure, and mechanical properties of cast Mg–Zn–Y–Zr magnesium alloy tank cover

2017 ◽  
Vol 94 (9-12) ◽  
pp. 4199-4208 ◽  
Author(s):  
Xiangsheng Xia ◽  
Lu Xiao ◽  
Qiang Chen ◽  
Hui Li ◽  
Yanjiang Tan
Author(s):  
Panuwat Soranansri ◽  
Tanaporn Rojhirunsakool ◽  
Narongsak Nithipratheep ◽  
Chackapan Ngaouwnthong ◽  
Kraisuk Boonpradit ◽  
...  

In hot forging industry, the process design and the billet size determination are very crucial steps because those steps directly influence both the product quality and material utilization. The purpose of this paper was to propose a technique used to design the hot forging process for the manufacturing of the talar body prosthesis. The talar body prosthesis is one of the artificial bones, which its geometry is a free form shape. In this study, the Finite Element Modeling (FEM) was used as a tool to verify the proposed design before implementation in a production line. In addition, an initial billet was determined the optimum size in the FEM by varying the mass ratio factor, the diameter, and the length. It was found that the mass ratio factor is a very useful guideline since the optimum size is quite close to the provided size from the guideline. The FEM results showed that the dimensions of the initial billet significantly affect the complete metal filling in the die cavity. Moreover, the optimum size between the diameter and length can reduce the material waste in the hot forging process of the talar body prosthesis. Finally, the experimental results of the hot forging process showed that the proposed process design with the optimum size of the initial billet is achieved in order to manufacture the talar body prosthesis and the material utilization of the new proposed process is improved from the traditional process by 2.6 times.


2018 ◽  
Vol 32 (5) ◽  
pp. 2219-2225 ◽  
Author(s):  
Yong-Jin Choi ◽  
Sang-Kon Lee ◽  
In-Kyu Lee ◽  
Sun Kwang Hwang ◽  
Jong Cheon Yoon ◽  
...  

Author(s):  
Su-Hai Hsiang ◽  
Yi-Cheng Hong ◽  
Huey-Lin Ho ◽  
Shiuh-Kuang Yang

This study investigates the formability of AZ31 and AZ61 magnesium alloy for bicycle parts under hot forging process. Firstly, finite element software DEFORM is applied to simulate the deformation behaviors of magnesium alloys bicycle parts under different process parameters. The process parameters considered in the simulation are materials heating temperatures, lubricants and punch speeds. Changes in process parameters, the forging loads and the completeness of filling of material in die cavity are discussed. The optimal forging condition can be obtained from evaluation of the completeness of filling of material in die cavity, forging load and distribution of stress and strain. The experimental conditions are set according to the optimal simulation results. Hot forging experiments are carried out under the condition of heating range from 240°C to 350°C, different kind of lubricants, constant punch speeds 0.9mm/s to study the formability of magnesium alloy for bicycle parts. The experimental results are compare with the DEFORM simulation results. The obtained forging loads and completeness of filling are in good agreement with the simulation results. The validity of the simulation model established in this study can be confirmed. Finally, from the measured result of hardness and metallographic observation of forged part, the influence of forging temperatures on the strength and microstructures of magnesium alloy for bicycle parts under forging process can be evaluated.


Sign in / Sign up

Export Citation Format

Share Document