Effect of post-weld heat treatment on microstructure and mechanical properties of deep penetration autogenous TIG-welded dissimilar joint between creep strength enhanced ferritic steel and austenitic stainless steel

2020 ◽  
Vol 108 (9-10) ◽  
pp. 3207-3229 ◽  
Author(s):  
Zhenyu Fei ◽  
Zengxi Pan ◽  
Dominic Cuiuri ◽  
Huijun Li ◽  
Wen Huang ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5580
Author(s):  
Mikko Hietala ◽  
Matias Jaskari ◽  
Mohammed Ali ◽  
Antti Järvenpää ◽  
Atef Hamada

In this study, ultra-high-strength steels, namely, cold-hardened austenitic stainless steel AISI 301 and martensitic abrasion-resistant steel AR600, as base metals (BMs) were butt-welded using a disk laser to evaluate the microstructure, mechanical properties, and effect of post-weld heat treatment (PWHT) at 250 °C of the dissimilar joints. The welding processes were conducted at different energy inputs (EIs; 50–320 J/mm). The microstructural evolution of the fusion zones (FZ) in the welded joints was examined using electron backscattering diffraction (EBSD) and laser scanning confocal microscopy. The hardness profiles across the weldments and tensile properties of the as-welded joints and the corresponding PWHT joints were measured using a microhardness tester and universal material testing equipment. The EBSD results showed that the microstructures of the welded joints were relatively similar since the microstructure of the FZ was composed of a lath martensite matrix with a small fraction of austenite. The welded structure exhibited significantly higher microhardness at the lower EIs of 50 and 100 J/mm (640 HV). However, tempered martensite was promoted at the high EI of 320 J/mm, significantly reducing the hardness of the FZ to 520 HV. The mechanical tensile properties were considerably affected by the EI of the as-welded joints. Moreover, the PWHT enhanced the tensile properties by increasing the deformation capacity due to promoting the tempered martensite in the FZ.


Sign in / Sign up

Export Citation Format

Share Document