laser beam welding
Recently Published Documents


TOTAL DOCUMENTS

882
(FIVE YEARS 218)

H-INDEX

37
(FIVE YEARS 6)

Author(s):  
Ömer Üstündağ ◽  
Nasim Bakir ◽  
Sergej Gook ◽  
Andrey Gumenyuk ◽  
Michael Rethmeier

AbstractIt is already known that the laser beam welding (LBW) or hybrid laser-arc welding (HLAW) processes are sensitive to manufacturing tolerances such as gaps and misalignment of the edges, especially at welding of thick-walled steels due to its narrow beam diameter. Therefore, the joining parts preferably have to be milled. The study deals with the influence of the edge quality, the gap and the misalignment of edges on the weld seam quality of hybrid laser-arc welded 20-mm-thick structural steel plates which were prepared by laser and plasma cutting. Single-pass welds were conducted in butt joint configuration. An AC magnet was used as a contactless backing. It was positioned under the workpiece during the welding process to prevent sagging. The profile of the edges and the gap between the workpieces were measured before welding by a profile scanner or a digital camera, respectively. With a laser beam power of just 13.7 kW, the single-pass welds could be performed. A gap bridgeability up to 1 mm at laser-cut and 2 mm at plasma-cut samples could be reached respectively. Furthermore, a misalignment of the edges up to 2 mm could be welded in a single pass. The new findings may eliminate the need for cost and time-consuming preparation of the edges.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tushar Sonar ◽  
Visvalingam Balasubramanian ◽  
Sudersanan Malarvizhi ◽  
Thiruvenkatam Venkateswaran ◽  
Dhenuvakonda Sivakumar

Purpose The primary objective of this investigation is to optimize the constricted arc tungsten inert gas (CA-TIG) welding parameters specifically welding current (WC), arc constriction current (ACC), ACC frequency (ACCF) and CA traverse speed to maximize the tensile properties of thin Inconel 718 sheets (2 mm thick) using a statistical technique of response surface methodology and desirability function for gas turbine engine applications. Design/methodology/approach The four factor – five level central composite design (4 × 5 – CCD) matrix pertaining to the minimum number of experiments was chosen in this investigation for designing the experimental matrix. The techniques of numerical and graphical optimization were used to find the optimal conditions of CA-TIG welding parameters. Findings The thin sheets of Inconel 718 (2 mm thick) can be welded successfully using CA-TIG welding process without any defects. The joints welded using optimized conditions of CA-TIG welding parameters showed maximum of 99.20%, 94.45% and 73.5% of base metal tensile strength, yield strength and elongation. Originality/value The joints made using optimized CA-TIG welding parameters disclosed 99.20% joint efficiency which is comparatively 20%–30% superior than conventional TIG welding process and comparable to costly electron beam welding and laser beam welding processes. The parametric mathematical equations were designed to predict the tensile properties of Inconel 718 joints accurately with a confidence level of 95% and less than 4.5% error. The mathematical relationships were also developed to predict the tensile properties of joints from the grain size (secondary dendritic arm spacing-SDAS) of fusion zone microstructure.


Author(s):  
M. Möbus ◽  
P. Woizeschke

AbstractDeep-penetration laser beam welding is highly dynamic and affected by many parameters. Several investigations using differently sized laser spots, spot-in-spot laser systems, and multi-focus optics show that the intensity distribution is one of the most influential parameters; however, the targeted lateral and axial intensity design remains a major challenge. Therefore, a laser processing optic has been developed that coaxially combines two separate laser sources/beams with different beam characteristics and a measuring beam for optical coherence tomography (OCT). In comparison to current commercial spot-in-spot laser systems, this setup not only makes it possible to independently vary the powers of the two laser beams but also their focal planes, thus facilitating the investigation into the influence of specific energy densities along the beam axis. First investigations show that the weld penetration depth increases with increasing intensities in deeper focal positions until the reduced intensity at the sample surface, due to the deep focal position, is no longer sufficient to form a stable keyhole, causing the penetration depth to drop sharply.


2022 ◽  
Author(s):  
Rafael Gomes Nunes Silva ◽  
Max Baranenko Rodrigues ◽  
Milton Pereira ◽  
Koen Faes

Abstract Welding processes are present in all sectors of the industry, highlighting the manufacturing industry of thick plates and pipelines. In these applications, welding processes have a major influence on costs, schedules, risk analysis and project feasibility. Conventional arc welding processes, such as the gas metal arc welding (GMAW) process, have limitations when applied to high thickness joints due to their maximum achievable penetration depth. On the other hand, the laser beam welding (LBW) welding process, despite reaching high penetration depths, has several limitations mainly regarding the geometric tolerance of the joint. In this regard, the hybrid laser-arc welding (HLAW) process emerges as a promising bonding process, combining the advantages of the GMAW and LBW processes into a single melting pool. Despite the many operational and metallurgical advantages, the HLAW process presents a high complexity due to the high number of parameters involved and the interaction between the laser beam and the electric arc. The present work discusses the challenges involved in the parametrization of the HLAW process applied to the joining of thick plates and pipes, and empirically evaluated a comparison between the HLAW and GMAW processes, showing a reduction of operating time of approximately 40 times, and a reduction of consumption of shielding gas and filler material of approximately 20 times, evidencing the technical and financial contribution of the hybrid process.


2022 ◽  
Vol 9 ◽  
Author(s):  
Donato Coviello ◽  
Antonio D’Angola ◽  
Donato Sorgente

Keyhole laser welding is the benchmark for deep-penetration joining processes. It needs high incident laser beam power densities at the workpiece surface to take place. The gaseous phase plays a fundamental role to keep the deep and narrow keyhole cavity open during the process. The plasma created in this process is a mixture of ionized metal vapors and the environmental gas and it develops inside the keyhole (keyhole plasma) and above the workpiece surface (plasma plume). The presence of plasma implicates absorption, scattering, and refraction of laser beam rays. These phenomena alter the power density of the laser beam irradiating the workpiece surface and thus affect the resulting welding process. In this work, a mathematical and numerical model has been developed to calculate the keyhole shape taking into account the plasma absorption effects. The model considers the keyhole walls as the liquid-vapor interface and computes the keyhole geometry applying a local energy balance at this interface. In addition, the model takes into account the multiple reflections effects inside the cavity through an iterative ray-tracing technique, and calculates the absorption mechanism due to inverse Bremsstrahlung for each ray along its segmented path inside the keyhole. Results show the effect of plasma properties on the keyhole shape and depth.


2021 ◽  
Author(s):  
Eric Wasilewski ◽  
Nikolay Doynov ◽  
Ralf Ossenbrink ◽  
Vesselin Michailov

Abstract This work presents a comparative study of thermal conditions that occur during laser beam welding of high strength steel 100Cr6 that often leads to a loss of technological strength and may conditionally produce cold cracks. The results from both experiments and thermal-metallurgical FE-simulations indicate that the type of heat coupling changes significantly when welding with different process parameters, e.g., in the transition between conduction and deep penetration welding. Further, the simulations show that as a result of the high welding speeds and reduced energy per unit length, extremely high heating rates of up to 2x104 K s-1 (set A) resp. 4x105 K s-1 (set B) occur in the material. Both welds thus concern a range of values for which conventional Time-Temperature-Austenitization (TTA) diagrams are not currently defined, so that the material models can only be calibrated using general assumptions. This noted change in energy per unit length and welding speeds causes significantly steep temperature gradients with a slope of approximately 5x103 K mm-1 and strong drops in the heating and cooling rates, particularly in the heat affected zone near the weld metal. This means that even short distances along the length present a staggering difference in relation to the temperature peaks. The temperature cycles also show very different cooling rates for the respective parameter sets, although in both cases they are well below a cooling time t8/5 of one second, so that the phase transformation always leads to the formation of martensite. The results from this study are intended to be used for further detailed experimental and numerical investigation of microstructure, hydrogen distribution, and stress-strain development at different restrain conditions.


Sign in / Sign up

Export Citation Format

Share Document