Ultrafine particle emission during high-speed milling of hardened AISI 1045 steel

2020 ◽  
Vol 110 (3-4) ◽  
pp. 617-627
Author(s):  
Mohamed Shnfir ◽  
J. Kouam ◽  
V. Songmene
1984 ◽  
Vol 106 (3) ◽  
pp. 242-247 ◽  
Author(s):  
A. Thangaraj ◽  
P. K. Wright ◽  
M. Nissle

Using metallographic and microhardness techniques, temperature distributions have been determined in twist drills. The methods rely on the fact that certain high speed steel materials exhibit microstructural changes when subjected to temperatures greater than 600°C. Quick-stop specimens have also been obtained to study the metal flow patterns over the drill flutes. These results have been used to comment on the different wear mechanisms that affect the performance of a twist drill. Preliminary results show that bulk plastic flow occurs near the margin of the drill where the temperatures are in the vicinity of 900°C when machining AISI 1045 steel at 40 m/min.


2016 ◽  
Vol 861 ◽  
pp. 63-68 ◽  
Author(s):  
Xue Ping Zhang ◽  
Shu Biao Wu ◽  
Zhen Qiang Yao ◽  
Li Feng Xi

Hardened AISI 1045 steel implemented in machine tool spindle was previously ground using grinding operation. This research aims to address the feasibility of hard turning AISI 1045 using PCBN tool with chip breaker under dry condition. Chip morphology, cutting force and temperature were measured, analyzed and correlated with machining parameters. Experimental results demonstrate that serrated chips are generated at high speeds, high feed rate is an assistant to promote serrated chips, and chip breaker can help break chip into acceptable lengths. Cutting forces were characterized with periodic fluctuation along three directions as chips are serrated. Temperature at machined zone can reach as high as 1200°C, which indicates that adiabatic shear bands can be successfully achieved during the machining of hardened AISI 1045 steel without applying lubricants.


2018 ◽  
Vol 2 (4) ◽  
pp. 66 ◽  
Author(s):  
Luis Hernández González ◽  
Yassmin Seid Ahmed ◽  
Roberto Pérez Rodríguez ◽  
Patricia Zambrano Robledo ◽  
Martha Guerrero Mata

The manufacturing industry aims to produce many high quality products efficiently at low cost, thereby motivating companies to use advanced manufacturing technologies. The use of high-speed machining is increasingly widespread; however, it lacks a deep-rooted knowledge base needed to facilitate implementation. In this paper, response surface methodology (RSM) has been applied to determine the optimum cutting conditions leading to minimum flank wear in high-speed dry turning on AISI 1045 steel. The mathematical models in terms of machining parameters were developed for flank wear prediction using RSM on the basis of experimental results. The high speed turning experiments were carried out with two coated carbide and a cermet inserts using AISI 1045 steel as work material at different cutting speeds and machining times. The models selected for optimization were validated through the Pareto principle. Results showed the GC4215 insert to be the most optimal option, because it did not reach the cutting tool life limit and could be used for the whole range of cutting parameters selected. To quantitatively evaluate the usefulness of the cutting tools, it was proposed the coefficient of use of the tools from the results of the contour graphs. The GC4215 insert showed 100% effectiveness, followed by the GC4225 with 98.4%, and finally, the CT5015 insert with 83%.


2012 ◽  
Vol 723 ◽  
pp. 196-201 ◽  
Author(s):  
Peng Nan Li ◽  
Ming Chen ◽  
Xiao Jian Kang ◽  
Li Na Zhang ◽  
Ming Zhou

In this study AISI 1045 steel of different hardness are used in high speed milling. According to Taguchi method, cutting parameters (milling speed, milling depth, feed per tooth) and workpiece hardness for the influence of high speed milling of the surface roughness are optimized. Through this study, not only the optimal cutting parameters of the minimum surface roughness is obtained, but also the main cutting parameters that effect performance in high speed milling is analysed. Researching results can be provided to guide establishment of the high speed milling process.


Author(s):  
A. K. Balaji

Predicting tool-wear (and thereby, tool-life) and selecting proper coated tools along with appropriate tool geometry still remains a major concern for industries trying to achieve increased productivity using automated machining processes. This study is focused upon aggressive high-speed rough turning of AISI 1045 steel. The wear patterns in different coated tools (one mono-layer PVD and two multi-layer CVD coatings) are correlated to changes in nominal tool geometry. This study focuses on the role of tooling geometry (inclination and rake angles) and their importance in dictating the behavior, performance, and wear of coated tools. Using an ‘equivalent toolface’ (ET) model, this study correlates the nominal tool geometry to an equivalent geometry, thereby introducing a new methodology for characterizing the complex effects of multilayer coatings in terms of simple effective tool geometry. The ET approach provides a new angle for understanding the tribological effects of coatings in machining.


2020 ◽  
Vol 18 (2) ◽  
pp. 205
Author(s):  
Roberto Pérez ◽  
Luis Hernández ◽  
Ana Quesada ◽  
Julio Pino ◽  
Enrique Zayas

High-speed turning is an advanced and emerging machining technique that, in contrast to the conventional machining, allows the manufacture of the workpiece with high accuracy, efficiency and quality, with lower production costs and with a considerable reduction in the machining times. The cutting tools used for the conventional machining cannot be employed for high-speed machining due to a high temperature induced in machining and a lower tool life. Therefore, it is necessary to study the influence of high cutting speeds on the temperature distribution in different typologies of cutting tools, with the aim of evaluating their behavior. In this paper, a finite element method modeling approach with arbitrary Lagrangian-Eulerian fully coupled thermal-stress analysis is employed. The research presents the results of different cutting tools (two coated carbide tools and uncoated cermet) effects on average surface temperature fields on the cutting edge in the dry high-speed turning of AISI 1045 steel. The numerical experiments were designed based on different cutting tools like input parameters and different temperature field zones like dependent variables in the dry high-speed turning of AISI 1045 steel. The results indicate that the dry high-speed turning of AISI 1045 steel does not influence significantly the temperature field zones when P10, P15 or P25 inserts are used. Therefore, the use of a dry high-speed turning method, which reduces the amount of lubricant and increases productivity, may represent an alternative to turning to the extent here described.


Author(s):  
Timothy J. Burns ◽  
Steven P. Mates ◽  
Richard L. Rhorer ◽  
Eric P. Whitenton ◽  
Debasis Basak

New experimental data on AISI 1045 steel from the NIST pulse-heated Kolsky Bar Laboratory are presented. The material is shown to exhibit a nonequilibrium phase transformation at high strain rate. An interesting feature of these data is that the material has a stiffer response to compressive loading when it has been preheated to a testing temperature that is below the eutectoid temperature using pulse-heating than it does when it has been preheated using a slower heating method. On the other hand, when the material has been pulse-heated to a temperature that exceeds the eutectoid temperature prior to compressive loading on the Kolsky bar, it is shown to exhibit a significant loss of strength. A consequence of this behavior is that fixed-parameter constitutive models, such as the well-known Johnson-Cook model, cannot be used to describe this constitutive response behavior. An argument is made that the phase transition does not occur during high-speed machining operations, and suggestions are made as to how to modify the Johnson-Cook model of Jaspers and Dauzenberg for this material in order to obtain improved temperature predictions in finite-element simulations of high-speed machining processes.


2014 ◽  
Vol 903 ◽  
pp. 21-26 ◽  
Author(s):  
Shamsuddin Sulaiman ◽  
Amir Roshan ◽  
Soroosh Borazjani

The aim of this paper is to investigate the effect of cutting speed and uncut chip thickness on cutting performance. A Finite Element Method (FEM) based on the ABAQUS explicit software which involves Johnson-Cook material mode and Coulombs friction law was used to simulate of High Speed Machining (HSM) of AISI 1045 steel. In this simulation work, feed rate ranging from 0.05 mm/rev to 0.13 mm/rev and cutting speed ranging from 200 m/min to 600 m/min at three different cutting speeds were investigated. From the simulation results it was observed that increasing feed rate and cutting speed lead to increase temperature and stress distribution at tool/chip interface. The results obtained from this study are highly essential to predict machining induced residual stresses and thermo-mechanical deformation related properties on the machined surface.


Sign in / Sign up

Export Citation Format

Share Document