Development of a laboratory-scale Upset Protrusion Joining (UPJ) system for dissimilar materials

Author(s):  
Nicholas Andreae ◽  
Dharmendra Chalasani ◽  
Mukesh Jain
Author(s):  
N. Merk ◽  
A. P. Tomsia ◽  
G. Thomas

A recent development of new ceramic materials for structural applications involves the joining of ceramic compounds to metals. Due to the wetting problem, an interlayer material (brazing alloy) is generally used to achieve the bonding. The nature of the interfaces between such dissimilar materials is the subject of intensive studies and is of utmost importance to obtain a controlled microstructure at the discontinuities to satisfy the demanding properties for engineering applications . The brazing alloy is generally ductile and hence, does not readily fracture. It must also wett the ceramic with similar thermal expansion coefficient to avoid large stresses at joints. In the present work we study mullite-molybdenum composites using a brazing alloy for the weldment.A scanning electron micrograph from the cross section of the joining sequence studied here is presented in Fig. 1.


Author(s):  
C. P. Doğan ◽  
R. D. Wilson ◽  
J. A. Hawk

Capacitor Discharge Welding is a rapid solidification technique for joining conductive materials that results in a narrow fusion zone and almost no heat affected zone. As a result, the microstructures and properties of the bulk materials are essentially continuous across the weld interface. During the joining process, one of the materials to be joined acts as the anode and the other acts as the cathode. The anode and cathode are brought together with a concomitant discharge of a capacitor bank, creating an arc which melts the materials at the joining surfaces and welds them together (Fig. 1). As the electrodes impact, the arc is extinguished, and the molten interface cools at rates that can exceed 106 K/s. This process results in reduced porosity in the fusion zone, a fine-grained weldment, and a reduced tendency for hot cracking.At the U.S. Bureau of Mines, we are currently examining the possibilities of using capacitor discharge welding to join dissimilar metals, metals to intermetallics, and metals to conductive ceramics. In this particular study, we will examine the microstructural characteristics of iron-aluminum welds in detail, focussing our attention primarily on interfaces produced during the rapid solidification process.


Author(s):  
V. Brahmbhatt ◽  
David R. Greatrix ◽  
J. Karpynczyk ◽  
A. P. Trumpour

2015 ◽  
Vol 69 (2) ◽  
pp. 131-134
Author(s):  
Masaru Futaba
Keyword(s):  

Author(s):  
Rodrigo De Melo Silveira ◽  
Isabel Matos ◽  
Lia Pimont ◽  
Paula Cristina Fernandes ◽  
Leonardo Henrique Gouvêa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document