Interfacial structures of dissimilar materials joined by capacitor-discharge welding

Author(s):  
C. P. Doğan ◽  
R. D. Wilson ◽  
J. A. Hawk

Capacitor Discharge Welding is a rapid solidification technique for joining conductive materials that results in a narrow fusion zone and almost no heat affected zone. As a result, the microstructures and properties of the bulk materials are essentially continuous across the weld interface. During the joining process, one of the materials to be joined acts as the anode and the other acts as the cathode. The anode and cathode are brought together with a concomitant discharge of a capacitor bank, creating an arc which melts the materials at the joining surfaces and welds them together (Fig. 1). As the electrodes impact, the arc is extinguished, and the molten interface cools at rates that can exceed 106 K/s. This process results in reduced porosity in the fusion zone, a fine-grained weldment, and a reduced tendency for hot cracking.At the U.S. Bureau of Mines, we are currently examining the possibilities of using capacitor discharge welding to join dissimilar metals, metals to intermetallics, and metals to conductive ceramics. In this particular study, we will examine the microstructural characteristics of iron-aluminum welds in detail, focussing our attention primarily on interfaces produced during the rapid solidification process.

1994 ◽  
Vol 364 ◽  
Author(s):  
R. D. Wilson ◽  
D. E. Alman ◽  
J. A. Hawk

AbstractCapacitor Discharge Welding (CDW) is a rapid solidification joining process capable of cooling rates greater than 106 K/s. The Bureau of Mines is investigating the CDW process as a method of joining TiAl, Fe3A1 and MoSi2. Experimental results show that the fusion zone of the CDW welds is less than 0.1 mm wide, is uniform in composition, and has a cellular solidification microstructure. This paper compares the CDW microstructure of several intermetallics to the microstructures obtained from the gas tungsten arc welding.


2015 ◽  
Vol 396 ◽  
pp. 283-287 ◽  
Author(s):  
Jingdai Wang ◽  
Yu Meng ◽  
Huaxia Zhang ◽  
Hui Tang ◽  
Rongbing Lin ◽  
...  

2010 ◽  
Vol 667-669 ◽  
pp. 997-1002
Author(s):  
Tomasz Tokarski

Magnesium and its alloys are attractive candidates for automotive and aerospace applications due to their relatively high strength and low density. However, their low ductility determined by hcp structure of material results in limitation of plastic deformation processing. In order to improve ductility as well as mechanical properties, structure refinement processes can be used. It is well known that effective refining of the material structure can be achieved by increasing the cooling rate during casting procedures, hence rapid solidification process (RSP) has been experimented for the fabrication of magnesium alloys. The present paper reports an experimental investigation on the influence of rapid solidification on the mechanical properties of AM60 magnesium alloy. In order to obtain RS material melt spinning process was applied in protective atmosphere, resulting in formation of RS ribbons. Following consolidation of the RS material is necessary to obtain bulk material with high mechanical properties, as so hot extrusion process was applied. It was noticed that application of plastic consolidation by hot extrusion is the most effective process to achieve full densification of material. For comparison purposes, the conventionally cast and hot extruded AM60 alloy was studied as well. The purpose of the present study was to investigate in detail the effect of rapid solidification and extrusion temperature on the structure and mechanical properties of the materials.


2000 ◽  
Vol 2 (3) ◽  
pp. 143-150
Author(s):  
Brian K. Paul ◽  
Wiwat Thaneepakorn ◽  
Rick D. Wilson

2014 ◽  
Vol 1004-1005 ◽  
pp. 168-171
Author(s):  
Hong Yan Du ◽  
Yaj Jang Li ◽  
Juan Wang

Mg/Al dissimilar materials were welded successfully by GTAW with SAlMg-1 and SAlMg-2 welding wire of Mg-Al system. The nice weld shape and free defects of joints are obtained. The test results indicated that continuous lamellar intermetallic compounds is not found The structure of Mg side in the fusion zone is composed of α-Mg solid solution+ β-Al12Mg17eutectic structure and precipitates β-A112lMg17on the grain boundary. The structure in the weld zone is mainly α-Mg solid solution + β-A112lMg17solid solutions. Mg and Al content are stable in the fusion zone of Mg side. However, in the weld zone of Mg side the Mg content is decreased gradually, and the Al content is increased that reaches a stable level in the weld zone of Al side. As a result, when Mg content in the wire can hold a proper level, the intermetallic compounds will be controlled effectively, and the performance of AZ31/7005 welding joint can be improved.


2014 ◽  
Author(s):  
Seshadev Sahoo ◽  
Kevin Chou

Powder-bed electron beam additive manufacturing (EBAM) is a relatively new technology to produce metallic parts in a layer by layer fashion by melting and fusing metallic powders. EBAM is a rapid solidification process and the properties of the parts depend on the solidification behavior as well as the microstructure of the build material. Thus, the prediction of part microstructures during the process may be an important factor for process optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. Among different methods, phase-field modeling (PFM) has recently emerged as a powerful computational technique for simulating microstructure evolutions at the mesoscale during a rapid solidification process. PFM describes microstructures using a set of conserved and non-conserved field variables and the evolution of the field variables are governed by Cahn-Hilliard and Allen-Cahn equations. By using the thermodynamics and kinetic parameters as input parameters in the model, PFM is able to simulate the evolution of complex microstructures during materials processing. The objective of this study is to achieve a thorough review of PFM techniques used in various processes, attempted for an application to microstructure evolutions during EBAM. The concept of diffuse interfaces, phase field variables, thermodynamic driving forces for microstructure evolutions and the kinetic phase-field equations are described in this paper.


Sign in / Sign up

Export Citation Format

Share Document