capacitor discharge
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 46)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 100 (11) ◽  
pp. 349-358
Author(s):  
JERRY E. GOULD ◽  
◽  
LINDSEY LINDAMOOD ◽  
JULIO MALPICA ◽  
PATRICK LESTER ◽  
...  

A major challenge for high-volume resistance spot welding of aluminum sheet is durability of the electrodes themselves. In production today, electrodes have total anticipated lives (including dressing) on the order of 1000 welds. This is largely related to the use of medium-frequency direct current (MFDC) power. The single-polarity orientation of MFDC welding results in excessive heating of one electrode (anode) and accelerated wear rates. Recently, technology employing capacitor discharge (CD) welding in conjunction with polarity switching has been developed. This work is the first effort in examining the response of resistance spot welding on aluminum sheet using this power source. Part 1 of this research (Ref. 1) described basic process robustness in spot welding with CD power systems. Part 2 addresses electrode life response. Duplicate electrode life tests were completed for 2000 welds without failure. These results were related to the polarity switching and short time that produced balanced and minimized wear. Additional testing was done without the use of electrode-cooling water. A limited test (500 welds) largely paralleled the ones done with cooling, suggesting that long-term spot welding with polarity-switching CD power and no water was possible.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012195
Author(s):  
V S Klimash ◽  
B D Tabarov ◽  
E G Antonov

Abstract It is proposed to reduce the number of electrical and electronic devices by 1.5 times in three-stage capacitor installations by changing the connections in the power circuit and using a special control method. The new principle of construction of reactive power compensators will allow, with minimal changes and additions to existing installations, to reduce the costs of their production and the cost of finished products. The existing installations contain three blocks of the same type of capacitors, each of which is equipped with an electrical and electronic device and resistors for their discharge. It is proposed to connect two of these three blocks in parallel without changing the design of the products, using a common electronic device for connecting and disconnecting the resulting block of capacitors with double capacity and a common electrical device in the capacitor discharge circuit of this block. A model is presented in the Matlab environment for the study of dynamic and stationary processes of three-stage reactive power regulation in a new scheme of a capacitor plant. Numerical experiments have shown that when the installation is switched on and off, as well as when switching from one stage of reactive power regulation to another, the proposed device does not create bursts of starting currents. After starting, it almost immediately enters the steady-state operation mode and when switching stages, it also immediately passes from one level of the steady-state values of such to another level of their steady-state values. The installation is switched off without switching losses and without arcing on the mechanical contacts, since thyristor switches with natural switching are switched off first, and then the de-energized mains switch.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Gregory Gold ◽  
David A. McGady ◽  
Subodh P. Patil ◽  
Valeri Vardanyan

Abstract Particle-antiparticle pairs can be produced by background electric fields via the Schwinger mechanism provided they are unconfined. If, as in QED in (3+1)-d these particles are massive, the particle production rate is exponentially suppressed below a threshold field strength. Above this threshold, the energy for pair creation must come from the electric field itself which ought to eventually relax to the threshold strength. Calculating this relaxation in a self-consistent manner, however, is difficult. Chu and Vachaspati addressed this problem in the context of capacitor discharge in massless QED2 [1] by utilizing bosonization in two-dimensions. When the bare fermions are massless, the dual bosonized theory is free and capacitor discharge can be analyzed exactly [1], however, special care is required in its interpretation given that the theory exhibits confinement. In this paper we reinterpret the findings of [1], where the capacitors Schwinger-discharge via electrically neutral dipolar meson-production, and generalize this to the case where the fermions have bare masses. Crucially, we note that when the initial charge of the capacitor is large compared to the charge of the fermions, Q » e, the classical equation of motion for the bosonized model accurately characterizes the dynamics of discharge. For massless QED2, we find that the discharge is suppressed below a critical plate separation that is commensurate with the length scale associated with the meson dipole moment. For massive QED2, we find in addition, a mass threshold familiar from (3+1)-d, and show the electric field relaxes to a final steady state with a magnitude proportional to the initial charge. We discuss the wider implications of our findings and identify challenges in extending this treatment to higher dimensions.


2021 ◽  
Vol 100 (10) ◽  
pp. 309-322
Author(s):  
JERRY E. GOULD ◽  
◽  
LINDSEY LINDAMOOD ◽  
JULIO MALPICA ◽  
PATRICK LESTER ◽  
...  

A key aspect of integrating automotive sheet into automotive production are the costs associated with joining. While the majority of sheet steel assembly is done with resistance spot welding, that has not readily translated to aluminum. Resistance spot welding of aluminum sheet is challenged by high current demand as well as reduced electrode life. In the latter case, direct current (DC) power supplied by state-of-the-art systems has exacerbated the problem. Recently, technology employing capacitor discharge (CD) welding in conjunction with polarity switching has been developed. This work is a first effort in examining the response of resistance spot welding on aluminum sheet to polarity-switching CD power. In this paper, the current range response between medium-frequency DC (MFDC) and polarity-switching CD was investigated. It was found that polarity-switching CD welding offered improved current ranges over MFDC. In addition, replicate mechanical testing cross-tension results were similar, but tensile shear strengths improved nominally 20–25%. Finally, some limited tests were done to assess the suitability of CD resistance spot welding in the presence of an adhesive. Current range tests with and without a prepulse were done, and both showed excellent weldability.


Author(s):  
Qian Zhang ◽  
Bao-Zhu Zhang ◽  
Yun Luo ◽  
Gang Yang ◽  
Hong-xiang Zheng

Abstract Capacitor discharge (CD) stud welding is a common and fast connection technology. This paper presents an experimental and simulation study of the stud weld joint of copper stud and carbon plate. An optimized stud welding process was proposed based on microstructure, microhardness and residual stresses of CD stud welded joint. The results show that a narrow weld seam with widmanstaten structure were formed because of quickly cooling. For the longer stud extension length, the width of weld zone becomes wider and the microstructure becomes more uniform. As the increase of welding voltage and stud extension length, the microhardness increases then decreases. However, the residual stresses are increased with welding voltage increases, while they are decreased with the increases of stud extension length. The optimized welding voltage and stud extension length should be designed to 90 V and 5 mm, respectively. This study will provide a great significance to the stud welding on site.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3466
Author(s):  
Hao Qiang ◽  
Zhenyu Wu ◽  
Tian Xu ◽  
Pengcheng Kong ◽  
Shuren Mao ◽  
...  

In this paper, a voltage-boost-type non-voltage drop single-phase full-bridge inverter connected to a switched-capacitor structure is proposed. The output voltage of the inverter is controlled by the pulse width modulation of a DSP to control the lead and break of the active switches. The full-bridge switches work at low frequency; the other switches work at high frequency. The inverter uses two capacitor modules to charge and discharge alternately so as to overcome the problem of voltage drop on the output side of the inverter in the transition stage from series capacitor discharge to parallel charge. By analyzing the charge–discharge characteristics of the RC charge–discharge circuit, the capacitor charge–discharge cycle can be adjusted to alter the output voltage within a certain range. The results from the physical construction verify the Simulation results achieved well, which demonstrates satisfactory performance that supports the verification of the above theory.


Sign in / Sign up

Export Citation Format

Share Document