A multi-scale modelling framework for anisotropy prediction in aluminium alloy sheet and its application in the optimisation of the deep-drawing process

Author(s):  
Wencheng Liu ◽  
Yong Pang
2007 ◽  
Vol 345-346 ◽  
pp. 121-124
Author(s):  
Yasunori Harada ◽  
Kenzo Fukaura ◽  
Kenichiro Mori

In the multi-stage deep drawing processes of a beta titanium alloy sheet, the formability has been investigated. The beta titanium alloy sheets have sufficient ductility at room temperature, whereas a seizure tends to occur during deep drawing due to high reactivity with other materials. To prevent the seizure, the beta titanium alloy sheet was treated by oxide coating heating, because the coated sheet was not in direct contact with the die during deep drawing due to the existence of the oxide layer. The blank used was the commercial beta titanium alloy Ti-15V-3Cr-3Sn-3Al. The effect of the coating condition on the formability in the multi-stage deep drawing process was examined. It was found that long drawn cups with a height sixfold that of the diameter were successfully formed by oxide coating heating.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5901-5906
Author(s):  
JUNG GIL SHIM ◽  
YOUNG TAG KEUM

In this study, the FEM material model based on the crystal plasticity is introduced for the numerical simulation of deep drawing process of A5052 aluminum alloy sheet. For calculating the deformation and stress in a crystal of aluminum alloy sheet, Taylor's model is employed. To find the texture evolution, the crystallographic orientation is updated by computing the crystal lattice rotation. In order to verify the crystal plasticity-based FEM material model, the strain distribution and the draw-in amount are compared with experimental measurements. The crystal FEM strains agree well with measured strains. The comparison of draw-in amount shows less 1.96% discrepancy. Texture evolution depends on the initial texture.


Magnesium ◽  
2005 ◽  
pp. 848-853
Author(s):  
Shi-Hong Zhang ◽  
Kun Zhang ◽  
Zhong-Tang Wang ◽  
Chuan-Fu Yu ◽  
Yi Xu ◽  
...  

2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Haibo Wang ◽  
Mingliang Men ◽  
Yu Yan ◽  
Min Wan ◽  
Qiang Li

Abstract Earings appear easily during deep drawing of cylindrical parts owing to the anisotropic properties of materials. However, current methods cannot fully utilize the mechanical properties of material, and the number of earings obtained differ with the simulation methods. In order to predict the eight-earing problem in the cylindrical deep drawing of 5754O aluminum alloy sheet, a new method of combining the yield stress and anisotropy index (r-value) to solve the parameters of the Hill48 yield function is proposed. The general formula for the yield stress and r-value in any direction is presented. Taking a 5754O aluminum alloy sheet as an example in this study, the deformation area in deep drawing is divided into several equal sectorial regions based on the anisotropy. The parameters of the Hill48 yield function are solved based on the yield stress and r-value simultaneously for the corresponding deformation area. Finite element simulations of deep drawing based on new and existing methods are carried out for comparison with experimental results. This study provides a convenient and reliable way to predict the formation of eight earings in the deep drawing process, which is expected to be useful in industrial applications. The results of this study lay the foundation for the optimization of the cylindrical deep drawing process, including the optimization of the blank shape to eliminate earing defects on the final product, which is of great importance in the actual production process.


Sign in / Sign up

Export Citation Format

Share Document