Effect of copper donor material-assisted friction stir welding of AA6061-T6 alloy on downward force, microstructure, and mechanical properties

Author(s):  
Srinivasa Naik Bhukya ◽  
Zhenhua Wu ◽  
Joseph Maniscalco ◽  
Abdelmageed Elmustafa
2021 ◽  
Author(s):  
Srinivasa Bhukya ◽  
Zhenhua Wu ◽  
Joseph Maniscalco ◽  
Abdelmageed Elmustafa

Abstract In this research, Copper (Cu) donor material assisted friction stir welding (FSW) of AA6061-T6 alloy was studied. Cu assisted FSW joints of AA6061-T6 alloy were prepared at a constant tool rotational rate of 1400 rpm and various welding speeds at 1 mm/s and 3 mm/s. The Cu donor material of different thickness (i.e., 20%, 40%, and 60%) with respect to the workpiece thickness was selected to assist the FSW joining at the plunge stage. It is observed that the downward force generated in the FSW process was gradually decreased after introducing Cu donor material with incremental thicknesses with respect to workpiece at the plunge stage. Post-weld analysis was characterized in terms of microstructure, and mechanical properties. The results of microstructure analysis at the stir zone (SZ) show the formation of finer grains due to dynamic recrystallization and plastic deformation. Micro-hardness tests reveal that the hardness decreased from the base metal (BM) to the SZ across the heat affected zone (HAZ) and thermo-mechanically affected zone (TMAZ). The lowest value of hardness appeared in the TMAZ and HAZ where tensile failure occurs. With increasing welding speed, the average hardness in the SZ decreased due to lower heat input and faster cooling rate. Tensile test plots show no significant change in ultimate tensile strength with or without Cu donor material. Fractography of tensile tested samples shows both ductile and brittle like structure for given welding parameters. This proposed work of FSW with Cu donor material is promising to increase tool life due to the decrement of the downforce during plunge and throughout the welding stage. Meanwhile, the inclusion of donor material did not compromise the weld quality in terms of the mechanical properties and micro-hardness.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1938
Author(s):  
Haifeng Yang ◽  
Hongyun Zhao ◽  
Xinxin Xu ◽  
Li Zhou ◽  
Huihui Zhao ◽  
...  

In this study, 2A14-T4 Al-alloy T-joints were prepared via stationary shoulder friction stir welding (SSFSW) technology where the stirring pin’s rotation speed was set as different values. In combination with the numerical simulation results, the macro-forming, microstructure, and mechanical properties of the joints under different welding conditions were analyzed. The results show that the thermal cycle curves in the SSFSW process are featured by a steep climb and slow decreasing variation trends. As the stirring pin’s rotation speed increased, the grooves on the weld surface became more obvious. The base and rib plates exhibit W- or N-shaped hardness distribution patterns. The hardness of the weld nugget zone (WNZ) was high but was lower than that of the base material. The second weld’s annealing effect contributed to the precipitation and coarsening of the precipitated phase in the first weld nugget zone (WNZ1). The hardness of the heat affect zone (HAZ) in the vicinity of the thermo-mechanically affected zone (TMAZ) dropped to the minimum. As the stirring pin's rotation speed increased, the tensile strengths of the base and rib plates first increased and then dropped. The base and rib plates exhibited ductile and brittle/ductile fracture patterns, respectively.


2019 ◽  
Vol 60 (11-12) ◽  
pp. 734-738 ◽  
Author(s):  
E. N. Ryl’kov ◽  
F. Yu. Isupov ◽  
A. A. Naumov ◽  
O. V. Panchenko ◽  
A. I. Shamshurin

Sign in / Sign up

Export Citation Format

Share Document