Precise aircraft single-point positioning using GPS post-mission orbits and satellite clock corrections

1996 ◽  
Vol 70 (9) ◽  
pp. 562-571
Author(s):  
G. Lachapelle ◽  
M.E. Cannon ◽  
W. Qiu ◽  
C. Varner
1996 ◽  
Vol 70 (9) ◽  
pp. 562-571 ◽  
Author(s):  
G. Lachapelle ◽  
M. E. Cannon ◽  
W. Qiu ◽  
C. Varner

2020 ◽  
Vol 12 (13) ◽  
pp. 2081 ◽  
Author(s):  
Guoqiang Jiao ◽  
Shuli Song ◽  
Yangyang Liu ◽  
Ke Su ◽  
Na Cheng ◽  
...  

For the global ordinary users, the broadcast ephemeris plays important roles in positioning, navigation and timing (PNT) services. With the construction of a new generation of the BeiDou navigation satellite system (BDS), the development of BDS has entered the era of globalization. It is meaningful for global users to analyze and assess the BDS-2 and BDS-3 broadcast ephemeris. Therefore, the satellite orbits and clock offsets calculated by broadcast ephemeris are compared with the precise orbit and clock offset products provided by three analysis centers (i.e., Helmholtz Centre Potsdam German Research Center for Geosciences (GFZ), Wuhan University (WHU) and Shanghai Astronomical Observatory (SHA)), and the corresponding signal-in-space range error (SISRE) and the orbit-only SISRE are analyzed to assess the accuracy of BDS broadcast ephemeris. Due to the upgrade of BDS-3 satellite hardware technology and inter-satellite links payload and the development of satellite orbit determination algorithm, the accuracy of broadcast orbit and clock offsets has been greatly improved. The root mean square (RMS) of BDS-3 broadcast orbit errors is improved by 86.30%, 89.47% and 76.86%, and the standard deviation (STD) is improved by 79.41%, 77.00% and 76.78% compared with BDS-2 in the radial, along-track and cross-track directions. The corresponding RMS and STD of all BDS-3 satellite clock offsets are improved by 40.34% and 52.49% than that of BDS-2, respectively. Meanwhile, the mean RMS and STD are 1.78 m and 0.40 m for BDS-2 SISRE, 1.72 m and 0.34 m for BDS-2 orbit-only SISRE, 0.50 m and 0.14 m for BDS-3 SISRE, and 0.17 m and 0.04 m for BDS-3 orbit-only SISRE. It is noteworthy that the average broadcast-minus-precise (BMP) clock values of BDS-2 and BDS-3 are inconsistent, which can indirectly prove that the datum of broadcast clock offsets for BDS-2 and BDS-3 are inconsistent. The inconsistency of the datum of satellite clock offsets and receiver hardware delay bias between BDS-2 and BDS-3 will result in the inter-system bias (ISB) on the receiver segment. For JAVAD TRE_3 receivers, the ISB is relatively small and thus can be ignored. However, for the TRIMBLE ALLOY, SEPT POLARX5, CETC-54-GMR-4016, CETC-54-GMR-4011, GNSS-GGR and UB4B0-13478 receivers, estimating ISB can improve the positioning accuracy of single point positioning (SPP) by 20.15%, 19.81% and 12.76% in north, east and up directions, respectively.


GPS Solutions ◽  
2013 ◽  
Vol 18 (2) ◽  
pp. 273-282 ◽  
Author(s):  
Jean-Philippe Montillet ◽  
Lukasz K. Bonenberg ◽  
Craig M. Hancock ◽  
Gethin W. Roberts

Positioning ◽  
2014 ◽  
Vol 05 (04) ◽  
pp. 107-114 ◽  
Author(s):  
Rock Santerre ◽  
Lin Pan ◽  
Changsheng Cai ◽  
Jianjun Zhu

2007 ◽  
Vol 42 (3) ◽  
pp. 149-153
Author(s):  
A. Farah

Code Single Point Positioning Using Nominal Gnss Constellations (Future Perception) Global Navigation Satellite Systems (GNSS) have an endless number of applications in industry, science, military, transportation and recreation & sports. Two systems are currently in operation namely GPS (the USA Global Positioning System) and GLONASS (the Russian GLObal NAvigation Satellite System), and a third is planned, the European satellite navigation system GALILEO. The potential performance improvements achievable through combining these systems could be significant and expectations are high. The need is inevitable to explore the future of positioning from different nominal constellations. In this research paper, Bernese 5.0 software could be modified to simulate and process GNSS observations from three different constellations (GPS, Glonass and Galileo) using different combinations. This study presents results of code single point positioning for five stations using the three constellations and different combinations.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6197
Author(s):  
Kai Liu ◽  
Xiye Guo ◽  
Jun Yang ◽  
Xiaoyu Li ◽  
Changshui Liu ◽  
...  

Precise single-point positioning using carrier-phase measurements can be provided by the synchronized pseudolite system. The primary task of carrier phase positioning is ambiguity resolution (AR) with rapidity and reliability. As the pseudolite system is usually operated in the dense multipath environment, cycle slips may lead the conventional least-squares ambiguity decorrelation adjustment (LAMBDA) method to incorrect AR. A new AR method based on the idea of the modified ambiguity function approach (MAFA), which is insensitive to the cycle slips, is studied in this paper. To improve the model strength of the MAFA and to eliminate the influence of constant multipath biases on the time-average model in static mode, the kinematic multi-epoch MAFA (kinematic ME-MAFA) algorithm is proposed. A heuristic method for predicting the ‘float position’ corresponding to every Voronoi cell of the next epoch, making use of Doppler-based velocity information, is implemented to improve the computational efficiency. If the success rate is very close to 1, it is possible to guarantee reliable centimeter-level accuracy positioning without further ambiguity validation. Therefore, a computing method of the success rate for the kinematic ME-MAFA is proposed. Both the numerical simulations and the kinematic experiment demonstrate the feasibility of the new AR algorithm according to its accuracy and reliability. The accuracy of the horizontal positioning solution is better than 1.7 centimeters in our pseudolite system.


Sign in / Sign up

Export Citation Format

Share Document