A method to validate gravimetric-geoid computation software based on Stokes's integral formula

1997 ◽  
Vol 71 (9) ◽  
pp. 571-576 ◽  
Author(s):  
W. E. Featherstone ◽  
J. G. Olliver
2021 ◽  
Vol 95 (5) ◽  
Author(s):  
Matej Varga ◽  
Martin Pitoňák ◽  
Pavel Novák ◽  
Tomislav Bašić

AbstractThis paper studies the contribution of airborne gravity data to improvement of gravimetric geoid modelling across the mountainous area in Colorado, USA. First, airborne gravity data was processed, filtered, and downward-continued. Then, three gravity anomaly grids were prepared; the first grid only from the terrestrial gravity data, the second grid only from the downward-continued airborne gravity data, and the third grid from combined downward-continued airborne and terrestrial gravity data. Gravimetric geoid models with the three gravity anomaly grids were determined using the least-squares modification of Stokes’ formula with additive corrections (LSMSA) method. The absolute and relative accuracy of the computed gravimetric geoid models was estimated on GNSS/levelling points. Results exhibit the accuracy improved by 1.1 cm or 20% in terms of standard deviation when airborne and terrestrial gravity data was used for geoid computation, compared to the geoid model computed only from terrestrial gravity data. Finally, the spectral analysis of surface gravity anomaly grids and geoid models was performed, which provided insights into specific wavelength bands in which airborne gravity data contributed and improved the power spectrum.


1982 ◽  
Vol 43 (2) ◽  
pp. 189-195 ◽  
Author(s):  
Claude Esling ◽  
Jacques Muller ◽  
Hans-Joachim Bunge
Keyword(s):  

1995 ◽  
Vol 10 (08) ◽  
pp. 1219-1236 ◽  
Author(s):  
S. KHARCHEV ◽  
A. MARSHAKOV

We study the role of integral representations in the description of nonperturbative solutions to c ≤ 1 string theory. A generic solution is determined by two functions, W(x) and Q(x), which behave at infinity like xp and xq respectively. The integral formula for arbitrary (p, q) models is derived, which explicitly realizes a duality transformation between (p, q) and (q, p) 2D gravity solutions. We also discuss the exact solutions to the string equation and reduction condition and present several explicit examples.


2019 ◽  
Vol 9 (1) ◽  
pp. 127-132
Author(s):  
D. Zhao ◽  
Z. Gong ◽  
J. Feng

Abstract For the modelling and determination of the Earth’s external gravity potential as well as its second-order radial derivatives in the space near sea surface, the surface layer integral method was discussed in the paper. The reasons for the applicability of the method over sea surface were discussed. From the original integral formula of disturbing potential based on the surface layer method, the expression of the radial component of the gravity gradient tensor was derived. Furthermore, an identity relation was introduced to modify the formula in order to reduce the singularity problem. Numerical experiments carried out over the marine area of China show that, the modi-fied surface layer integral method effectively improves the accuracy and reliability of the calculation of the second-order radial gradient component of the disturbing potential near sea surface.


Sign in / Sign up

Export Citation Format

Share Document