geoid computation
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 95 (12) ◽  
Author(s):  
Yan Ming Wang ◽  
Laura Sánchez ◽  
Jonas Ågren ◽  
Jianliang Huang ◽  
René Forsberg ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (4) ◽  
pp. 1653-1666
Author(s):  
Mirko Reguzzoni ◽  
Daniela Carrion ◽  
Carlo Iapige De Gaetani ◽  
Alberta Albertella ◽  
Lorenzo Rossi ◽  
...  

Abstract. The International Service for the Geoid (ISG, https://www.isgeoid.polimi.it/, last access: 31 March 2021) provides free access to a dedicated and comprehensive repository of geoid models through its website. In the archive, both the latest releases of the most important and well-known geoid models, as well as less recent or less known ones, are freely available, giving to the users a wide range of possible applications to perform analyses on the evolution of the geoid computation research field. The ISG is an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). Its main tasks are collecting, analysing, and redistributing local, regional, and continental geoid models and providing technical support to people involved in geoid-related topics for both educational and research purposes. In the framework of its activities, the ISG performs research taking advantage of its archive and organizes seminars and specific training courses on geoid determination, supporting students and researchers in geodesy as well as distributing training material on the use of the most common algorithms for geoid estimation. This paper aims at describing the data and services, including the newly implemented DOI Service for geoid models (https://dataservices.gfz-potsdam.de/portal/?fq=subject:isg, last access: 31 March 2021), and showing the added value of the ISG archive of geoid models for the scientific community and technicians, like engineers and surveyors (https://www.isgeoid.polimi.it/Geoid/reg_list.html, last access: 31 March 2021).


2021 ◽  
Vol 95 (5) ◽  
Author(s):  
Matej Varga ◽  
Martin Pitoňák ◽  
Pavel Novák ◽  
Tomislav Bašić

AbstractThis paper studies the contribution of airborne gravity data to improvement of gravimetric geoid modelling across the mountainous area in Colorado, USA. First, airborne gravity data was processed, filtered, and downward-continued. Then, three gravity anomaly grids were prepared; the first grid only from the terrestrial gravity data, the second grid only from the downward-continued airborne gravity data, and the third grid from combined downward-continued airborne and terrestrial gravity data. Gravimetric geoid models with the three gravity anomaly grids were determined using the least-squares modification of Stokes’ formula with additive corrections (LSMSA) method. The absolute and relative accuracy of the computed gravimetric geoid models was estimated on GNSS/levelling points. Results exhibit the accuracy improved by 1.1 cm or 20% in terms of standard deviation when airborne and terrestrial gravity data was used for geoid computation, compared to the geoid model computed only from terrestrial gravity data. Finally, the spectral analysis of surface gravity anomaly grids and geoid models was performed, which provided insights into specific wavelength bands in which airborne gravity data contributed and improved the power spectrum.


2021 ◽  
Author(s):  
Yan Ming Wang

<p>The Rudzki inversion gravimetric reduction maps the Earth’s topographic masses inside the geoid in such a way that the inverted masses produce exactly the same potential as the topographic masses on the geoid. In other words, the indirect effect to the geoid is zero so that its computation is not needed. This paper proposes a geoid computation scheme that combines the Bouguer reduction and Rudzki inversion reduction under the spherical approximation and constant density assumption. The proposed computation scheme works with the Bouguer gravity field that is smooth and theoretically legitimate for the harmonic downward continuation. Then the Bouguer potential is compensated by the potential of the inverted masses, ensuring zero indirect effect to the geoid. The direct effect of the Rudzki inversion gravimetric reduction is added to the Bouguer gravity disturbance, resulting in the reduced gravity disturbance for geoid computation. A spherical harmonic reference gravity model is also developed so that the kernel modification/truncation can be applied to the Hotine integral. If the density of the topographic masses becomes available, the effect of density anomalies can be computed separately and added to the geoid computed under the constant density assumption. The combined ellipsoidal effect of the Bouguer and Rudzki inversion reduction should be insignificant because of the canceling effect between them.</p>


2021 ◽  
Author(s):  
Georgios S. Vergos ◽  
Ilias N. Tziavos ◽  
Dimitrios A. Natsiopoulos ◽  
Elisavet G. Mamagiannou ◽  
Eleftherios A. Pitenis

<p>In the frame of the GeoGravGOCE project, funded by the Hellenic Foundation for Research Innovation, GOCE Satellite Gravity Gradiometry (SGG) data are to be used for regional geoid and gravity field refinement as well as for potential determination in the frame of the International Height Reference Frame (IHRF). An inherent step in the geoid computation with either stochastic or spectral methods is the reduction of the related disturbing potential functionals within the well-known Remove-Compute-Restore (RCR) procedure. In this work we evaluate the latest, Release 6 (R6), satellite only and combined Global Geopotential Models (GGMs) which rely solely on GOCE and on land gravity data. The evaluation is performed over the established network of 1542 GPS/Levelling benchmarks over Greece mainland (BMs), which have been used in the past for the evaluation of GOCE GGMs. We employ the spectral enhancement approach, during which the GOCE-based GGMs are evaluated every one degree to the maximum degree of expansion coupled by EGM2008 and high-frequency RTM effects. This synthesis resolves wavelengths corresponding to maximum degree 216,000, hence the omission error is at the few mm-level. TIM-R6, DIR-R6, GOCO06s and XGM2019e are evaluated using EGM2008 residuals to the GPS/Levelling as the ground truth. From the results achieved, the optimal combination degree of a GOCE-only GGM augmented with EGM2008 is selected to be used in the sequel as reference field for the practical determination of the gravimetric geoid over Greece.</p>


Survey Review ◽  
2021 ◽  
pp. 1-13
Author(s):  
R. Goyal ◽  
J. Ågren ◽  
W.E. Featherstone ◽  
L.E. Sjöberg ◽  
O. Dikshit ◽  
...  

2020 ◽  
Author(s):  
Mirko Reguzzoni ◽  
Daniela Carrion ◽  
Carlo Iapige De Gaetani ◽  
Alberta Albertella ◽  
Lorenzo Rossi ◽  
...  

Abstract. The International Service for the Geoid (ISG, https://www.isgeoid.polimi.it/ ) provides free access to a dedicated and comprehensive repository of geoid models through its website. In the archive, both the latest releases of the most important and well-known geoid models, as well as less recent or less known ones, are freely available, giving to the users a wide range of possible applications to perform analyses on the evolution of the geoid computation research field. ISG is an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). Its main tasks are collecting, analysing and redistributing local, regional and continental geoid models and providing technical support to people involved in geoid-related topics for both educational and research purposes. In the framework of its activities, ISG performs research taking advantage of its archive and organizes seminars and specific training courses on geoid determination, supporting students and researchers in geodesy as well as distributing training material on the use of the most common algorithms for geoid estimation. This paper aims at describing the data and services, including the newly implemented DOI Service for geoid models (https://dataservices.gfz-potsdam.de/portal/?fq=subject:isg), and showing the added value of the ISG archive of geoid models for the scientific community and technicians, like engineers and surveyors (https://www.isgeoid.polimi.it/Geoid/reg_list.html).


2020 ◽  
Vol 94 (12) ◽  
Author(s):  
Vegard Ophaug ◽  
Christian Gerlach

AbstractCurrent International Association of Geodesy efforts within regional geoid determination include the comparison of different computation methods in the quest for the “1-cm geoid.” Internal (formal) and external (empirical) approaches to evaluate geoid errors exist, and ideally they should agree. Spherical radial base functions using the spline kernel (SK), least-squares collocation (LSC), and Stokes’s formula are three commonly used methods for regional geoid computation. The three methods have been shown to be theoretically equivalent, as well as to numerically agree on the millimeter level in a closed-loop environment using synthetic noise-free data (Ophaug and Gerlach in J Geod 91:1367–1382, 2017. 10.1007/s00190-017-1030-1). This companion paper extends the closed-loop method comparison using synthetic data, in that we investigate and compare the formal error propagation using the three methods. We use synthetic uncorrelated and correlated noise regimes, both on the 1-mGal ($$=10^{-5}~{\mathrm {m s}}^{-2}$$ = 10 - 5 m s - 2 ) level, applied to the input data. The estimated formal errors are validated by comparison with empirical errors, as determined from differences of the noisy geoid solutions to the noise-free solutions. We find that the error propagations of the methods are realistic in both uncorrelated and correlated noise regimes, albeit only when subjected to careful tuning, such as spectral band limitation and signal covariance adaptation. For the SKs, different implementations of the L-curve and generalized cross-validation methods did not provide an optimal regularization parameter. Although the obtained values led to a stabilized numerical system, this was not necessarily equivalent to obtaining the best solution. Using a regularization parameter governed by the agreement between formal and empirical error fields provided a solution of similar quality to the other methods. The errors in the uncorrelated regime are on the level of $$\sim $$ ∼ 5 mm and the method agreement within 1 mm, while the errors in the correlated regime are on the level of $$\sim $$ ∼ 10 mm, and the method agreement within 5 mm. Stokes’s formula generally gives the smallest error, closely followed by LSC and the SKs. To this effect, we note that error estimates from integration and estimation techniques must be interpreted differently, because the latter also take the signal characteristics into account. The high level of agreement gives us confidence in the applicability and comparability of formal errors resulting from the three methods. Finally, we present the error characteristics of geoid height differences derived from the three methods and discuss them qualitatively in relation to GNSS leveling. If applied to real data, this would permit identification of spatial scales for which height information is preferably derived by spirit leveling or GNSS leveling.


2020 ◽  
Author(s):  
Yan Ming Wang

<p>The effect of the topographic potential difference and the gravity correction on the geoid-quasigeoid separation are usually ignored in numerical computations. Those effects are computed in a mountainous Colorado region by using the digital elevation model SRTM v4.1 and terrestrial gravity data. The effects are computed at 1′X1′ grid size in the region. The largest effect is the topographic potential difference. It reaches a maximum of 19.0 cm with a standard deviation of 1.8 cm over the whole region. The gravity correction is smaller, but it still reaches a maximum of 3.0 cm with a standard deviation 0.3 cm for the whole region. The combined (ignored) effect ranges from -12.2 to 20.0 cm, with a standard deviation of 1.8 cm for the region. This numerical computation shows that the ignored terms must be taken into account for cm-geoid computation in mountainous regions.</p>


Sign in / Sign up

Export Citation Format

Share Document