Gender differences in trabecular bone architecture of the distal radius assessed with magnetic resonance imaging and implications for mechanical competence

2005 ◽  
Vol 16 (9) ◽  
pp. 1124-1133 ◽  
Author(s):  
Martin Hudelmaier ◽  
A. Kollstedt ◽  
E. M. Lochmüller ◽  
V. Kuhn ◽  
F. Eckstein ◽  
...  
Author(s):  
Lauren Bohner ◽  
Pedro Tortamano ◽  
Norbert Meier ◽  
Felix Gremse ◽  
Johannes Kleinheinz ◽  
...  

The aim of this study was to assess trabecular bone morphology via magnetic-resonance imaging (MRI) using microcomputed tomography (µCT) as the control group. Porcine bone samples were scanned with T1-weighted turbo spin echo sequence imaging, using TR 25 ms, TE 3.5 ms, FOV 100 × 100 × 90, voxel size 0.22 × 0.22 × 0.50 mm, and scan time of 11:18. µCT was used as the control group with 80 kV, 125 mA, and a voxel size of 16 µm. The trabecular bone was segmented on the basis of a reference threshold value and morphological parameters. Bone volume (BV), Bone-volume fraction (BvTv), Bone specific surface (BsBv), trabecular thickness (TbTh), and trabecular separation (TbSp) were evaluated. Paired t-test and Pearson correlation test were performed at p = 0.05. MRI overestimated BV, BvTv, TbTh, and TbSp values. BsBv was the only parameter that was underestimated by MRI. High statistical correlation (r = 0.826; p < 0.05) was found for BV measurements. Within the limitations of this study, MRI overestimated trabecular bone parameters, but with a statistically significant fixed linear offset.


2005 ◽  
Vol 46 (3) ◽  
pp. 306-309 ◽  
Author(s):  
B. Ludescher ◽  
P. Martirosian ◽  
S. Lenk ◽  
J. Machann ◽  
F. Dammann ◽  
...  

Purpose: To evaluate the feasibility of high‐resolution magnetic resonance imaging (MRI) of trabecular bone of the wrist at 3 Tesla (3T) in vivo and to assess the potential benefit of the increased resolution for clinical assessment of structural changes in spongy bone. Material and Methods: High‐resolution MRI of the wrist was performed with a whole‐body 3T MR scanner using a dedicated circularly polarized transmit–receive wrist‐coil. Two 3D‐FISP sequences with a spatial resolution of 300×300×300 µm3 in a measuring time of TA = 7:51 min, and 200×200×200 µm3 in TA = 9:33 min were applied. Seven young healthy volunteers and three elderly subjects with suspected osteoporosis were examined. The signal‐to‐noise ratio (SNR) in the optimized setup at 3T was compared to measurements at 1.5T. Results: The images at 3T allow microscopic analysis of the bone structure at an isotropic spatial resolution of 200 µm in examination times of <10 min. Differences in the structure of the spongy bone between normal and markedly osteoporotic subjects are well depicted. The SNR at 3T was found up to 16 times higher than at 1.5T applying unchanged imaging parameters. Conclusion: The proposed high‐resolution MRI technique offers high potential in the diagnosis and follow‐up of diseases with impaired bone structure of hand and/or wrist in clinical applications.


Sign in / Sign up

Export Citation Format

Share Document