scholarly journals Finding a Nash equilibrium in spatial games is an NP-complete problem

2004 ◽  
Vol 23 (2) ◽  
pp. 445-1 ◽  
Author(s):  
Richard Baron ◽  
Jacques Durieu ◽  
Hans Haller ◽  
Philippe Solal
2014 ◽  
Vol 55 ◽  
Author(s):  
Martynas Sabaliauskas ◽  
Jonas Mockus

Inspector problem represents an economic duel of inspector and law violator and is formulated as a bimatrix game. In general, bimatrix game is NP-complete problem. The inspector problem is a special case where the equilibrium can be found in polynomial time. In this paper, a generalized version of the Inspector Problem is described with the aim to represent broader family of applied problems, including the optimization of security systems. The explicit solution is provided and the Modified Strategy Elimination algorithm is introduced.


2001 ◽  
Vol 34 (44) ◽  
pp. 9555-9567 ◽  
Author(s):  
Tomohiro Sasamoto ◽  
Taro Toyoizumi ◽  
Hidetoshi Nishimori

Author(s):  
Régis Barbanchon ◽  
Etienne Grandjean
Keyword(s):  

2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Marta Borowiecka-Olszewska ◽  
Ewa Drgas-Burchardt ◽  
Nahid Yelene Javier-Nol ◽  
Rita Zuazua

AbstractWe consider arc colourings of oriented graphs such that for each vertex the colours of all out-arcs incident with the vertex and the colours of all in-arcs incident with the vertex form intervals. We prove that the existence of such a colouring is an NP-complete problem. We give the solution of the problem for r-regular oriented graphs, transitive tournaments, oriented graphs with small maximum degree, oriented graphs with small order and some other classes of oriented graphs. We state the conjecture that for each graph there exists a consecutive colourable orientation and confirm the conjecture for complete graphs, 2-degenerate graphs, planar graphs with girth at least 8, and bipartite graphs with arboricity at most two that include all planar bipartite graphs. Additionally, we prove that the conjecture is true for all perfect consecutively colourable graphs and for all forbidden graphs for the class of perfect consecutively colourable graphs.


Author(s):  
Lance Fortnow

This chapter demonstrates several approaches for dealing with hard problems. These approaches include brute force, heuristics, and approximation. Typically, no single technique will suffice to handle the difficult NP problems one needs to solve. For moderate-sized problems one can search over all possible solutions with the very fast computers available today. One can use algorithms that might not work for every problem but do work for many of the problems one cares about. Other algorithms may not find the best possible solution but still a solution that's good enough. Other times one just cannot get a solution for an NP-complete problem. One has to try to solve a different problem or just give up.


Author(s):  
F. W. Albalas ◽  
B. A. Abu-Alhaija ◽  
A. Awajan ◽  
A. Awajan ◽  
Khalid Al-Begain

New web technologies have encouraged the deployment of various network applications that are rich with multimedia and real-time services. These services demand stringent requirements are defined through Quality of Service (QoS) parameters such as delay, jitter, loss, etc. To guarantee the delivery of these services QoS routing algorithms that deal with multiple metrics are needed. Unfortunately, QoS routing with multiple metrics is considered an NP-complete problem that cannot be solved by a simple algorithm. This paper proposes three source based QoS routing algorithms that find the optimal path from the service provider to the user that best satisfies the QoS requirements for a particular service. The three algorithms use the same filtering technique to prune all the paths that do not meet the requirements which solves the complexity of NP-complete problem. Next, each of the three algorithms integrates a different Multiple Criteria Decision Making method to select one of the paths that have resulted from the route filtering technique. The three decision making methods used are the Analytic Hierarchy Process (AHP), Multi-Attribute Utility Theory (MAUT), and Kepner-Tregoe KT. Results show that the algorithms find a path using multiple constraints with a high ability to handle multimedia and real-time applications.


Author(s):  
D. Sirisha ◽  
G. Vijayakumari

Compute intensive applications featured as workflows necessitate Heterogeneous Processing Systems (HPS) for attaining high performance to minimize the turnaround time. Efficient scheduling of the workflow tasks is paramount to attain higher potentials of HPS and is a challenging NP-Complete problem. In the present work, Branch and Bound (BnB) strategy is applied to optimally schedule the workflow tasks. The proposed bounds are tighter, simpler and less complex than the existing bounds and the upper bound is closer to the exact solution. Moreover, the bounds on the resource provisioning are devised to execute the workflows in the minimum possible time and optimally utilize the resources. The performance of the proposed BnB strategy is evaluated on a suite of benchmark workflows. The experimental results reveal that the proposed BnB strategy improved the optimal solutions compared to the existing heuristic scheduling algorithms for more than 20 percent of the cases and generated better schedules over 7 percent for 82.6 percent of the cases.


Sign in / Sign up

Export Citation Format

Share Document