On full differential uniformity of permutations on the ring of integers modulo n

Author(s):  
P. R. Mishra ◽  
Prachi Gupta ◽  
Atul Gaur
2012 ◽  
Vol 8 (2) ◽  
Author(s):  
Tri Widjajanti ◽  
Dahlia Ramlan ◽  
Rium Hilum

<em>Ring of integers under the addition and multiplication as integral domain can be imbedded to the field of rational numbers. In this paper we make&nbsp; a construction such that any integral domain can be&nbsp; a field of quotient. The construction contains three steps. First, we define element of field F from elements of integral domain D. Secondly, we show that the binary operations in fare well-defined. Finally, we prove that </em><em>&nbsp;</em><em>f</em><em> </em><em>:</em><em> </em><em>D </em><em>&reg;</em><em> </em><em>F is an isomorphisma. In this case, the polynomial ring F[x] as the integral domain can be imbedded to the field of quotient.</em>


Author(s):  
Amr Ali Al-Maktry

AbstractLet R be a finite commutative ring. The set $${{\mathcal{F}}}(R)$$ F ( R ) of polynomial functions on R is a finite commutative ring with pointwise operations. Its group of units $${{\mathcal{F}}}(R)^\times $$ F ( R ) × is just the set of all unit-valued polynomial functions. We investigate polynomial permutations on $$R[x]/(x^2)=R[\alpha ]$$ R [ x ] / ( x 2 ) = R [ α ] , the ring of dual numbers over R, and show that the group $${\mathcal{P}}_{R}(R[\alpha ])$$ P R ( R [ α ] ) , consisting of those polynomial permutations of $$R[\alpha ]$$ R [ α ] represented by polynomials in R[x], is embedded in a semidirect product of $${{\mathcal{F}}}(R)^\times $$ F ( R ) × by the group $${\mathcal{P}}(R)$$ P ( R ) of polynomial permutations on R. In particular, when $$R={\mathbb{F}}_q$$ R = F q , we prove that $${\mathcal{P}}_{{\mathbb{F}}_q}({\mathbb{F}}_q[\alpha ])\cong {\mathcal{P}}({\mathbb{F}}_q) \ltimes _\theta {{\mathcal{F}}}({\mathbb{F}}_q)^\times $$ P F q ( F q [ α ] ) ≅ P ( F q ) ⋉ θ F ( F q ) × . Furthermore, we count unit-valued polynomial functions on the ring of integers modulo $${p^n}$$ p n and obtain canonical representations for these functions.


2007 ◽  
Vol 03 (04) ◽  
pp. 541-556 ◽  
Author(s):  
WAI KIU CHAN ◽  
A. G. EARNEST ◽  
MARIA INES ICAZA ◽  
JI YOUNG KIM

Let 𝔬 be the ring of integers in a number field. An integral quadratic form over 𝔬 is called regular if it represents all integers in 𝔬 that are represented by its genus. In [13,14] Watson proved that there are only finitely many inequivalent positive definite primitive integral regular ternary quadratic forms over ℤ. In this paper, we generalize Watson's result to totally positive regular ternary quadratic forms over [Formula: see text]. We also show that the same finiteness result holds for totally positive definite spinor regular ternary quadratic forms over [Formula: see text], and thus extends the corresponding finiteness results for spinor regular quadratic forms over ℤ obtained in [1,3].


2012 ◽  
Vol 96 (536) ◽  
pp. 283-287
Author(s):  
M. H. Jafari ◽  
A. R. Madadi

Author(s):  
Chris Bruce

Abstract We compute the KMS (equilibrium) states for the canonical time evolution on C*-algebras from actions of congruence monoids on rings of algebraic integers. We show that for each $\beta \in [1,2]$, there is a unique KMS$_\beta $ state, and we prove that it is a factor state of type III$_1$. There are phase transitions at $\beta =2$ and $\beta =\infty $ involving a quotient of a ray class group. Our computation of KMS and ground states generalizes the results of Cuntz, Deninger, and Laca for the full $ax+b$-semigroup over a ring of integers, and our type classification generalizes a result of Laca and Neshveyev in the case of the rational numbers and a result of Neshveyev in the case of arbitrary number fields.


Author(s):  
A. Haddley ◽  
R. Nair

AbstractLet $${\mathcal {M}}$$ M denote the maximal ideal of the ring of integers of a non-Archimedean field K with residue class field k whose invertible elements, we denote $$k^{\times }$$ k × , and a uniformizer we denote $$\pi $$ π . In this paper, we consider the map $$T_{v}: {\mathcal {M}} \rightarrow {\mathcal {M}}$$ T v : M → M defined by $$\begin{aligned} T_v(x) = \frac{\pi ^{v(x)}}{x} - b(x), \end{aligned}$$ T v ( x ) = π v ( x ) x - b ( x ) , where b(x) denotes the equivalence class to which $$\frac{\pi ^{v(x)}}{x}$$ π v ( x ) x belongs in $$k^{\times }$$ k × . We show that $$T_v$$ T v preserves Haar measure $$\mu $$ μ on the compact abelian topological group $${\mathcal {M}}$$ M . Let $${\mathcal {B}}$$ B denote the Haar $$\sigma $$ σ -algebra on $${\mathcal {M}}$$ M . We show the natural extension of the dynamical system $$({\mathcal {M}}, {\mathcal {B}}, \mu , T_v)$$ ( M , B , μ , T v ) is Bernoulli and has entropy $$\frac{\#( k)}{\#( k^{\times })}\log (\#( k))$$ # ( k ) # ( k × ) log ( # ( k ) ) . The first of these two properties is used to study the average behaviour of the convergents arising from $$T_v$$ T v . Here for a finite set A its cardinality has been denoted by $$\# (A)$$ # ( A ) . In the case $$K = {\mathbb {Q}}_p$$ K = Q p , i.e. the field of p-adic numbers, the map $$T_v$$ T v reduces to the well-studied continued fraction map due to Schneider.


1970 ◽  
Vol 11 (4) ◽  
pp. 411-416 ◽  
Author(s):  
Kenneth D. Magill

The family (R) of all endomorphisms of a ring R is a semigroup under composition. It follows easily that if R and T are isomorphic rings, then (R) and (T) are isomorphic semigroups. We devote ourselves here to the converse question: ‘If (R) and (T) are isomorphic, must R and T be isomorphic?’ As one might expect, the answer is, in general, negative. For example, the ring of integers has precisely two endomorphisms – the zero endomorphism and the identity automorphism. Since the same is true of the ring of rational numbers, the two endomorphism semigroups are isomorphic while the rings themselves are certainly not.


Sign in / Sign up

Export Citation Format

Share Document