Endophytic bacterial community diversity in two citrus cultivars with different citrus canker disease resistance

Author(s):  
Bing Liu ◽  
Jiahao Lai ◽  
Simeng Wu ◽  
Junxi Jiang ◽  
Weigang Kuang
2021 ◽  
Author(s):  
Bing Liu ◽  
Jiahao Lai ◽  
Simeng Wu ◽  
Junxi Jiang ◽  
Weigang Kuang

Abstract The selective infection of Xanthomonas citri pv. citri to citrus cultivars is universally known, but it is not clarified whether there is a relationship between endophytic bacteria and the resistance of host variety to canker disease. In order to explore the relationship, Satsuma mandarin and Newhall navel orange were collected respectively as samples of resistant or susceptible cultivars to citrus canker disease, and endophytic bacterial community of two citrus cultivars were analyzed by using a next-generation, Illumina-based sequencing approach. Simultaneously, the seasonal dynamics of endophytic bacterial community and dominant genera were analyzed. The results showed that there were four dominant groups including Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes in all samples at phylum level. Endophytic bacteria were the most abundant in spring samples, then in summer and autumn samples. There were some differences between endophytic bacterial community of resistant citrus and that of susceptible citrus to canker disease, and the endophytic bacteria of Satsuma mandarin are more abundant than that of Newhall navel orange. According to the analysis of dominant bacteria in two citrus cultivars, it was found that some endophytic bacteria with antagonistic characteristics existed universally in all samples, although the dominant bacteria in different seasonal sample were different. However, in Newhall navel orange of susceptible citrus to canker disease, there were not only some bacteria against Xanthomonas citri pv. citri, but also some cooperative bacteria of canker occurrence like Stenotrophomonas.


2019 ◽  
Vol 202 (1) ◽  
pp. 181-189 ◽  
Author(s):  
Guo-fang Zhang ◽  
Qiu-liang Huang ◽  
Xue-qin Bi ◽  
You-lin Liu ◽  
Zong-sheng Yuan

PLoS Genetics ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. e1009316
Author(s):  
Xiaomei Tang ◽  
Xia Wang ◽  
Yue Huang ◽  
Ling Ma ◽  
Xiaolin Jiang ◽  
...  

Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases in citrus industry worldwide. Most citrus cultivars such as sweet orange are susceptible to canker disease. Here, we utilized wild citrus to identify canker-resistant germplasms, and found that Atalantia buxifolia, a primitive (distant-wild) citrus, exhibited remarkable resistance to canker disease. Although the susceptibility gene LATERAL ORGAN BOUNDARIES 1 (LOB1) could also be induced in Atalantia after canker infection, the induction extent was far lower than that in sweet orange. In addition, three of amino acids encoded by transcription factor TFIIAγ in Atalantia (AbTFIIAγ) exhibited difference from those in sweet orange (CsTFIIAγ) which could stabilize the interaction between effector PthA4 and effector binding element (EBE) of LOB1 promoter. The mutation of AbTFIIAγ did not change its interaction with transcription factor binding motifs (TFBs). However, the AbTFIIAγ could hardly support the LOB1 expression induced by the PthA4. In addition, the activity of AbLOB1 promoter was significantly lower than that of CsLOB1 under the induction by PthA4. Our results demonstrate that natural variations of AbTFIIAγ and effector binding element (EBE) in the AbLOB1 promoter are crucial for the canker disease resistance of Atalantia. The natural mutations of AbTFIIAγ gene and AbLOB1 promoter in Atalantia provide candidate targets for improving the resistance to citrus canker disease.


LWT ◽  
2021 ◽  
pp. 111308
Author(s):  
Fumin Chi ◽  
Zhankun Tan ◽  
Xuedong Gu ◽  
Lin Yang ◽  
Zhang Luo

2021 ◽  
Vol 9 (6) ◽  
pp. 1176
Author(s):  
Simone Cristina Picchi ◽  
Laís Moreira Granato ◽  
Maria Júlia Festa Franzini ◽  
Maxuel Oliveira Andrade ◽  
Marco Aurélio Takita ◽  
...  

Xanthomonas citri subsp. citri (X. citri) is a plant pathogenic bacterium causing citrus canker disease. The xanA gene encodes a phosphoglucomutase/phosphomannomutase protein that is a key enzyme required for the synthesis of lipopolysaccharides and exopolysaccharides in Xanthomonads. In this work, firstly we isolated a xanA transposon mutant (xanA::Tn5) and analyzed its phenotypes as biofilm formation, xanthan gum production, and pathogenesis on the sweet orange host. Moreover, to confirm the xanA role in the impaired phenotypes we further produced a non-polar deletion mutant (ΔxanA) and performed the complementation of both xanA mutants. In addition, we analyzed the percentages of the xanthan gum monosaccharides produced by X. citri wild-type and xanA mutant. The mutant strain had higher ratios of mannose, galactose, and xylose and lower ratios of rhamnose, glucuronic acid, and glucose than the wild-type strain. Such changes in the saccharide composition led to the reduction of xanthan yield in the xanA deficient strain, affecting also other important features in X. citri, such as biofilm formation and sliding motility. Moreover, we showed that xanA::Tn5 caused no symptoms on host leaves after spraying, a method that mimetics the natural infection condition. These results suggest that xanA plays an important role in the epiphytical stage on the leaves that is essential for the successful interaction with the host, including adaptive advantage for bacterial X. citri survival and host invasion, which culminates in pathogenicity.


2021 ◽  
Author(s):  
Emily K. Bechtold ◽  
Stephanie Ryan ◽  
Sarah E. Moughan ◽  
Ravi Ranjan ◽  
Klaus Nüsslein

Grasslands represent a critical ecosystem important for global food production, soil carbon storage, and water regulation. Current intensification and expansion practices add to the degradation of grasslands and dramatically increase greenhouse gas emissions and pollution. Thus, new ways to sustain and improve their productivity are needed. Research efforts focus on the plant-leaf microbiome, or phyllosphere, because its microbial members impact ecosystem function by influencing pathogen resistance, plant hormone production, and nutrient availability through processes including nitrogen fixation. However, little is known about grassland phyllospheres and their response to environmental stress. In this study, globally dominant temperate and tropical forage grass species were grown in a greenhouse under current climate conditions and drought conditions that mimic future climate predictions to understand if (i) plant host taxa influence microbial community assembly, (ii) microbial communities respond to drought stress, and (iii) phyllosphere community changes correlate to changes in plant host traits and stress-response strategies. Community analysis using high resolution sequencing revealed Gammaproteobacteria as the dominant bacterial class, which increased under severe drought stress on both temperate and tropical grasses while overall bacterial community diversity declined. Bacterial community diversity, structure, and response to drought were significantly different between grass species. This community dependence on plant host species correlated with differences in grass species traits, which became more defined under drought stress conditions, suggesting symbiotic evolutionary relationships between plant hosts and their associated microbial community. Further understanding these strategies and the functions microbes provide to plants will help us utilize microbes to promote agricultural and ecosystem productivity in the future.


Sign in / Sign up

Export Citation Format

Share Document