scholarly journals Stability of Traveling Wave Solutions of Nonlinear Dispersive Equations of NLS Type

Author(s):  
Katelyn Plaisier Leisman ◽  
Jared C. Bronski ◽  
Mathew A. Johnson ◽  
Robert Marangell
2021 ◽  
pp. 1-23
Author(s):  
FÁBIO NATALI ◽  
SABRINA AMARAL

Abstract The purpose of this paper is to present an extension of the results in [8]. We establish a more general proof for the moving kernel formula to prove the spectral stability of periodic traveling wave solutions for the regularized Benjamin–Bona–Mahony type equations. As applications of our analysis, we show the spectral instability for the quintic Benjamin–Bona–Mahony equation and the spectral (orbital) stability for the regularized Benjamin–Ono equation.


2013 ◽  
Author(s):  
V. M. Vassilev ◽  
P. A. Djondjorov ◽  
M. Ts. Hadzhilazova ◽  
I. M. Mladenov

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 224
Author(s):  
Ghaylen Laouini ◽  
Amr M. Amin ◽  
Mohamed Moustafa

A comprehensive study of the negative-order Kadomtsev–Petviashvili (nKP) partial differential equation by Lie group method has been presented. Initially the infinitesimal generators and symmetry reduction, which were obtained by applying the Lie group method on the negative-order Kadomtsev–Petviashvili equation, have been used for constructing the reduced equations. In particular, the traveling wave solutions for the negative-order KP equation have been derived from the reduced equations as an invariant solution. Finally, the extended improved (G′/G) method and the extended tanh method are described and applied in constructing new explicit expressions for the traveling wave solutions. Many new and more general exact solutions are obtained.


Author(s):  
M. Bilal ◽  
M. Younis ◽  
H. Rezazadeh ◽  
T. A. Sulaiman ◽  
A. Yusuf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document