scholarly journals Galois representations on the cohomology of hyper-Kähler varieties

Author(s):  
Salvatore Floccari

AbstractWe show that the André motive of a hyper-Kähler variety X over a field $$K \subset {\mathbb {C}}$$ K ⊂ C with $$b_2(X)>6$$ b 2 ( X ) > 6 is governed by its component in degree 2. More precisely, we prove that if $$X_1$$ X 1 and $$X_2$$ X 2 are deformation equivalent hyper-Kähler varieties with $$b_2(X_i)>6$$ b 2 ( X i ) > 6 and if there exists a Hodge isometry $$f:H^2(X_1,{\mathbb {Q}})\rightarrow H^2(X_2,{\mathbb {Q}})$$ f : H 2 ( X 1 , Q ) → H 2 ( X 2 , Q ) , then the André motives of $$X_1$$ X 1 and $$X_2$$ X 2 are isomorphic after a finite extension of K, up to an additional technical assumption in presence of non-trivial odd cohomology. As a consequence, the Galois representations on the étale cohomology of $$X_1$$ X 1 and $$X_2$$ X 2 are isomorphic as well. We prove a similar result for varieties over a finite field which can be lifted to hyper-Kähler varieties for which the Mumford–Tate conjecture is true.

2014 ◽  
Vol 14 (2) ◽  
pp. 275-377 ◽  
Author(s):  
Tomoyuki Abe ◽  
Adriano Marmora

AbstractLet $X$ be a smooth proper curve over a finite field of characteristic $p$. We prove a product formula for $p$-adic epsilon factors of arithmetic $\mathscr{D}$-modules on $X$. In particular we deduce the analogous formula for overconvergent $F$-isocrystals, which was conjectured previously. The $p$-adic product formula is a counterpart in rigid cohomology of the Deligne–Laumon formula for epsilon factors in $\ell$-adic étale cohomology (for $\ell \neq p$). One of the main tools in the proof of this $p$-adic formula is a theorem of regular stationary phase for arithmetic $\mathscr{D}$-modules that we prove by microlocal techniques.


2015 ◽  
Vol 151 (4) ◽  
pp. 713-734 ◽  
Author(s):  
Bjorn Poonen ◽  
Damiano Testa ◽  
Ronald van Luijk

Assuming the Tate conjecture and the computability of étale cohomology with finite coefficients, we give an algorithm that computes the Néron–Severi group of any smooth projective geometrically integral variety, and also the rank of the group of numerical equivalence classes of codimension $p$ cycles for any $p$.


2018 ◽  
Vol 154 (4) ◽  
pp. 719-760
Author(s):  
Bryden Cais

We construct the $\unicode[STIX]{x1D6EC}$-adic crystalline and Dieudonné analogues of Hida’s ordinary $\unicode[STIX]{x1D6EC}$-adic étale cohomology, and employ integral $p$-adic Hodge theory to prove $\unicode[STIX]{x1D6EC}$-adic comparison isomorphisms between these cohomologies and the $\unicode[STIX]{x1D6EC}$-adic de Rham cohomology studied in Cais [The geometry of Hida families I:$\unicode[STIX]{x1D6EC}$-adic de Rham cohomology, Math. Ann. (2017), doi:10.1007/s00208-017-1608-1] as well as Hida’s $\unicode[STIX]{x1D6EC}$-adic étale cohomology. As applications of our work, we provide a ‘cohomological’ construction of the family of $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules attached to Hida’s ordinary $\unicode[STIX]{x1D6EC}$-adic étale cohomology by Dee [$\unicode[STIX]{x1D6F7}$–$\unicode[STIX]{x1D6E4}$modules for families of Galois representations, J. Algebra 235 (2001), 636–664], and we give a new and purely geometric proof of Hida’s finiteness and control theorems. We also prove suitable $\unicode[STIX]{x1D6EC}$-adic duality theorems for each of the cohomologies we construct.


2019 ◽  
Vol 31 (1) ◽  
pp. 83-110
Author(s):  
Takahiro Tsushima

Abstract We introduce a certain Artin–Schreier scheme over a finite field associated to a pair of coprime integers {(m,n)} with {n\geq 3} divisible by the characteristic of the base field, and study the middle étale cohomology group of it. If m is even, the variety admits actions of some finite Heisenberg groups. We study the middle cohomology as representations of the Heisenberg groups. If m is odd, we compute the Frobenius eigenvalues of it concretely. This affine scheme comes from the reduction of a certain affinoid in a Lubin–Tate space.


2020 ◽  
Vol 156 (7) ◽  
pp. 1476-1515
Author(s):  
Tony Feng

We prove a 1966 conjecture of Tate concerning the Artin–Tate pairing on the Brauer group of a surface over a finite field, which is the analog of the Cassels–Tate pairing. Tate asked if this pairing is always alternating and we find an affirmative answer, which is somewhat surprising in view of the work of Poonen–Stoll on the Cassels–Tate pairing. Our method is based on studying a connection between the Artin–Tate pairing and (generalizations of) Steenrod operations in étale cohomology. Inspired by an analogy to the algebraic topology of manifolds, we develop tools allowing us to calculate the relevant étale Steenrod operations in terms of characteristic classes.


Sign in / Sign up

Export Citation Format

Share Document