scholarly journals Nuclear magnetic resonance parameters in Zn2, Cd2 and Hg2 dimers: relativistic calculations

2021 ◽  
Vol 140 (3) ◽  
Author(s):  
Katarzyna Jakubowska ◽  
Magdalena Pecul

AbstractThe potential energy curves and the NMR properties: nuclear spin–spin coupling constants and nuclear shielding constants have been calculated for Zn2, Cd2 and Hg2 dimers using density functional theory. The calculations have been carried out using the relativistic four-component Dirac–Coulomb Hamiltonian, and, in the case of energy curves, also relativistic effective core potentials. In case of NMR parameters, the relativistic effects turned out to be critically important even for the lightest dimer, Zn2. The importance of the spin–orbit coupling depends on the internuclear distance: these effects tend to be significant for short internuclear distances.

Author(s):  
Leonid Krivdin ◽  
Valentin Semenov ◽  
Dmitriy Samul'cev

Relativistic effects in geometric parameters, NMR chemical shifts, and spin-spin coupling constants involving 1H, 15N, and 195Pt nuclei in cisplatin and transplatin, the simplest representatives of the platinum amino chloride complexes, were studied by means of the high-level nonempirical calculations within the framework of the Density Functional Theory


2005 ◽  
Vol 60 (3) ◽  
pp. 259-264 ◽  
Author(s):  
Bernd Wrackmeyer ◽  
Oleg L. Tok

Trimethylborane (1), triethylborane (2), 1,3-dimethyl-1-boracyclopentane (3), 1-methyl-1- boracyclohexane (4), 9-methyl- and 9-ethyl-9-borabicyclo[3.1.1]nonane [5(Me) and 5(Et)], and 1- boraadamantane (6) were studied by 11B and 13C NMR spectroscopy with respect to coupling constants 1J(13C,11B) and 1J(13C,13C). Results of DFT calculations at the B3LYP/6-311+g(d,p) level of theory show satisfactory agreement with the experimental data. Hyperconjugation arising from C-C σ bonds adjacent to the tricoordinate boron atom is indicated, in particular for 1-boraadamantane (6), by the optimised calculated structures, and by the experimental and calculated data 1J(13C,13C). The calculated magnitude of 1J(13C,1H) for carbon atoms adjacent to boron becomes significantly smaller if the optimised structures suggest hyperconjugative effects arising from these C-H bonds


2006 ◽  
Vol 61 (8) ◽  
pp. 949-955 ◽  
Author(s):  
Bernd Wrackmeyer ◽  
Oleg L. Tok

Coupling constants 1J(17O,11B) of borates, borane adducts and boranes with boron-oxygen bonds have been calculated on the basis of optimised molecular structures using the B3LYP/6-311+G(d,p) level of theory. This indicates that such coupling constants can be of either sign and that their magnitudes can be rather small. Since both 11B and 17O are quadrupole nuclei, it is therefore difficult to measure representative data. In the cases of trimethoxyborane and tetraethyldiboroxanes, it proved possible to obtain experimental data 1J(17O,11B) (22 and 18 Hz) by measurement of 17O NMR spectra at high temperature (120 °C and 160 °C) respectively. The magnitude of these coupling constants is in reasonable agreement with calculated data. In the case of the diboroxane, this points towards a bond angle B-O-B more close to 180◦ than to 140°


Sign in / Sign up

Export Citation Format

Share Document