scholarly journals Modification of EDC method for increased labeling efficiency and characterization of low-content protein in gum acacia using asymmetrical flow field-flow fractionation coupled with multiple detectors

Author(s):  
Meiyu Zhang ◽  
Lars Nilsson ◽  
Seungho Lee ◽  
Jaeyeong Choi

Abstract1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) is widely used as a crosslinker for fluorescence labeling of protein in the fields of biochemistry and food analysis. Many natural polysaccharides often contain some proteins or peptides that are very low in content but play a vital role in their biological function as well as technical applications. Determination of these low-content proteinaceous matters requires a highly sensitive and selective method. In this study, a methodological approach for investigations of the presence of proteinaceous material over the molar mass distribution (MD) of polysaccharides was developed using gum acacia (GA) as a model polysaccharide. EDC fluorescence-labeling method was modified by changing the pH (7, 9, and 11) of the solution for the analysis of low-content protein in food materials. Fluorescence spectroscopy and asymmetrical flow field-flow fractionation (AF4) were employed for characterizing the labeling efficiency and physiochemical properties of unlabeled and fluorescence-labeled GA. AF4 provided molar mass (M) and the radius of gyration (rG) of arabinogalactan (AG) and arabinogalactan protein complex (AGP) and determined the presence of proteinaceous matter over the MD. The labeling efficiencies of GA at pH 7, 9, and 11 determined by fluorescence spectroscopy were 56.5, 68.4, and 72.0%, respectively, with an increment of 15.5% when pH was increased from 7 to 11. The modified EDC fluorescence-labeling method allows highly sensitive and selective analysis of low-content proteinaceous matters and their distribution in natural polysaccharides. Graphical abstract

2018 ◽  
Vol 7 (1) ◽  
pp. 216-223 ◽  
Author(s):  
Irina Sulaeva ◽  
Philipp Vejdovszky ◽  
Ute Henniges ◽  
Arnulf Kai Mahler ◽  
Thomas Rosenau ◽  
...  

2006 ◽  
Vol 3 (3) ◽  
pp. 192 ◽  
Author(s):  
Enrica Alasonati ◽  
Björn Stolpe ◽  
Maria-Anna Benincasa ◽  
Martin Hassellöv ◽  
Vera I. Slaveykova

Environmental Context. Acidic polysaccharides are important components of the organic matter in ecosystems that are involved in the transport of metal pollutants. They are able to affect trace element cycling, both due to their metal binding properties and to their effect on aggregation and sedimentation of organic matter. In order to obtain more information regarding their role as metal pollutant carriers, the size distributions of alginate and metal alginate complexes have therefore been studied with novel instrumentation. Abstract. The present study explores the potential use of asymmetrical flow field flow fractionation (aFlFFF) with a multidetection system for the study of metal–alginate interactions. aFlFFF, coupled on-line to a differential refractive index and seven angle laser light scattering detectors was used to provide information on the alginate size distributions. In parallel, the metal distributions of metal–alginate complexes were probed by aFlFFF–high resolution inductively coupled plasma-mass spectrometry. Average values and continuous distributions of molar masses, radiuses of gyration and hydrodynamic radiuses, which are critical for understanding the role of alginates as carriers of metal pollutants, were evaluated in presence of Pb or Cd and compared with those in metal-free solutions of alginate. The values of number average and weight average molar mass, weight average radius of gyration and shape factor for alginate were 150 and 188 kg mol–1, 53 nm and 1.7, respectively. Alginate molar mass and radius of gyration distributions were slightly shifted to higher values by the addition of micromolar concentrations of Pb or Cd. The alginate size distribution in the presence of Cd was similar to the alginate-alone control, whereas in the presence of Pb the size distribution was broader with a shift of the maximum toward higher molar masses.


2010 ◽  
Vol 7 (2) ◽  
pp. 215 ◽  
Author(s):  
Enrica Alasonati ◽  
Stephane Dubascoux ◽  
Gaetane Lespes ◽  
Vera I. Slaveykova

Environmental context. Extracellular polymeric substances (EPS) are soluble polymers that are liberated from microorganisms and represent an important component of the natural organic matter in the aquatic and terrestrial environment. These substances affect nutrient and toxic metal cycling, both owing to their metal binding properties and their effect on aggregation and sedimentation. In order to obtain more information on their role in metal transport, EPS size (molar mass) distributions and the associated Ca, Cd and Pb were measured by using asymmetrical flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry. Abstract. Extracellular polymeric substances (EPSs) excreted by the bacterium Sinorhizobium meliloti and associated Ca, Cd and Pb were characterised by asymmetrical flow field-flow fractionation coupled with UV spectrophotometry and inductively coupled plasma mass spectrometry in terms of molar-mass distributions, number- and weight-average molar masses and polydispersity index. Two major populations with weight-average molar masses of 74 × 103 and 1.35 × 106 g mol–1 were obtained for the EPS. Characterisation of the whole EPS–metal interactions evidenced the preferential binding of Ca and Cd to the low molar mass fraction, whereas Pb associated mainly with the high molar mass (HMM) fraction. Comparison with the EPS produced by exoY-mutant, deficient in HMM-EPS excretion, confirmed the preferential binding of Pb to the high molar mass fraction. Enrichment of the EPS with increasing metal concentrations induced the formation of aggregates, which was most pronounced in the presence of 10–4 mol L–1 Pb.


Sign in / Sign up

Export Citation Format

Share Document