high molar mass
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 54)

H-INDEX

33
(FIVE YEARS 4)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 466
Author(s):  
Vamshi K. Chidara ◽  
Yves Gnanou ◽  
Xiaoshuang Feng

The anionic ring-opening copolymerization (ROCOP) of epoxides, namely of ethylene oxide (EO), with anhydrides (AH) generally produces strictly alternating copolymers. With triethylborane (TEB)-assisted ROCOP of EO with AH, statistical copolymers of high molar mass including ether and ester units could be obtained. In the presence of TEB, the reactivity ratio of EO (rEO), which is normally equal to 0 in its absence, could be progressively raised to values lower than 1 or higher than 1. Conditions were even found to obtain rEO equal or close to 1. Samples of P(EO-co-ester) with minimal compositional drift could be synthesized; upon basic degradation of their ester linkages, these samples afforded poly(ethylene oxide) (PEO) diol samples of narrow molar mass distribution. In other cases where rEO were lower or higher than 1, the PEO diol samples eventually isolated after degradation exhibited a broader distribution of molar masses because of the compositional drift of initial P(EO-co-ester) samples.


2021 ◽  
pp. 2100656
Author(s):  
Alexander Plucinski ◽  
Marko Pavlovic ◽  
Mairi Clarke ◽  
David Bhella ◽  
Bernhard V. K. J. Schmidt

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1815
Author(s):  
Katarína Valachová ◽  
Ladislav Šoltés

In the minireview presented here, the authors discuss the evaluation of inhibitory effect of substances in the phases of initiation and propagation of high-molar-mass hyaluronan oxidative degradation. The experimental approach should be considered as original since on using a simple experimental assay it is possible to prove both the so-called “preventive” and “chain-breaking” antioxidant activity of investigated water-soluble endo- or exogenous substances.


2021 ◽  
Author(s):  
Manfred H. Wagner ◽  
Esmaeil Narimissa ◽  
Taisir Shahid

AbstractElongational viscosity data of four well-characterized blends consisting of 10% mass fraction of monodisperse polystyrene PS-820k (molar mass of 820 kg/mol) and 90% matrix polystyrenes with a molar mass of 8.8, 23, 34, and 73 kg/mol, respectively, as reported by Shahid et al. Macromolecules 52: 2521–2530, 2019 are analyzed by the extended interchain pressure (EIP) model including the effects of finite chain extensibility and filament rupture. Except for the linear-viscoelastic contribution of the matrix, the elongational viscosity of the blends is mainly determined by the high molar mass component PS-820k at elongation rates when no stretching of the lower molar mass matrix chains is expected. The stretching of the long chains is shown to be widely independent of the molar mass of the matrix reaching from non-entangled oligomeric styrene (8.8 kg/mol) to well-entangled polystyrene (73kg/mol). Quantitative agreement between data and model can be obtained when taking the interaction of the long chains of PS-820k with the shorter matrix chains of PS-23k, PS-34k, and PS-73k into account. The interaction of long and short chains leads to additional entanglements along the long chains of PS-820k, which slow down relaxation of the long chains, as clearly seen in the linear-viscoelastic behavior. According to the EIP model, an increased number of entanglements also lead to enhanced interchain pressure, which limits maximal stretch. The reduced maximal stretch of the long chains due to entanglements of long chains with shorter matrix chains is quantified by introducing an effective polymer fraction of the long chains, which increases with the increasing length of the matrix chains resulting in the excellent agreement of experimental data and model predictions.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1485
Author(s):  
Jonas Eckrich ◽  
Niklas Hoormann ◽  
Erik Kersten ◽  
Keti Piradashvili ◽  
Frederik R. Wurm ◽  
...  

Background: Porous polyethylene (PPE) implants are used for the reconstruction of tissue defects but have a risk of rejection in case of insufficient ingrowth into the host tissue. Various growth factors can promote implant ingrowth, yet a long-term gradient is a prerequisite for the mediation of these effects. As modification of the implant surface with nanocarriers may facilitate a long-term gradient by sustained factor release, implants modified with crosslinked albumin nanocarriers were evaluated in vivo. Methods: Nanocarriers from murine serum albumin (MSA) were prepared by an inverse miniemulsion technique encapsulating either a low- or high-molar mass fluorescent cargo. PPE implants were subsequently coated with these nanocarriers. In control cohorts, the implant was coated with the homologue non-encapsulated cargo substance by dip coating. Implants were consequently analyzed in vivo using repetitive fluorescence microscopy utilizing the dorsal skinfold chamber in mice for ten days post implantation. Results: Implant-modification with MSA nanocarriers significantly prolonged the presence of the encapsulated small molecules while macromolecules were detectable during the investigated timeframe regardless of the form of application. Conclusions: Surface modification of PPE implants with MSA nanocarriers results in the alternation of release kinetics especially when small molecular substances are used and therefore allows a prolonged factor release for the promotion of implant integration.


2021 ◽  
Vol 22 (19) ◽  
pp. 10295
Author(s):  
Muhammad A. Munawar ◽  
Dirk W. Schubert

The present study outlines a reliable approach to determining the electrical conductivity and elasticity of highly oriented electrospun conductive nanofibers of biopolymers. The highly oriented conductive fibers are fabricated by blending a high molar mass polyethylene oxide (PEO), polycaprolactone (PCL), and polylactic acid (PLA) with polyaniline (PANi) filler. The filler-matrix interaction and molar mass (M) of host polymer are among governing factors for variable fiber diameter. The conductivity as a function of filler fraction (φ) is shown and described using a McLachlan equation to reveal the electrical percolation thresholds (φc) of the nanofibers. The molar mass of biopolymer, storage time, and annealing temperature are significant factors for φc. The Young’s modulus (E) of conductive fibers is dependent on filler fraction, molar mass, and post-annealing process. The combination of high orientation, tunable diameter, tunable conductivity, tunable elasticity, and biodegradability makes the presented nanofibers superior to the fibers described in previous literature and highly desirable for various biomedical and technical applications.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5404
Author(s):  
Marzenna Klimaszewska ◽  
Sabina Górska ◽  
Grzegorz Łapienis ◽  
Beata Kaleta ◽  
Sandra Górska ◽  
...  

We previously described the biosynthesis, isolation, and immunosuppressive activity of the selenium-containing polysaccharide fraction isolated from the mycelial culture of Lentinula edodes. Structural studies have shown that the fraction was a protein-containing mixture of high molar mass polysaccharides α- and β-glucans. However, which of the components of the complex fraction is responsible for the immunosuppressive activity non-typical for polysaccharides of fungal origin has not been explained. In the current study, we defined four-polysaccharide components of the Se-containing polysaccharide fraction determined their primary structure and examined the effect on T- and B-cell proliferation. The isolated Se-polysaccharides, α-1,4-glucan (Mw 2.25 × 106 g/mol), unbranched β-1,6-d-glucan, unbranched β-1,3-d-glucan and β-1,3-branched β-1,6-d-glucan (Mw 1.10 × 105 g/mol), are not typical as components of the cell wall of L. edodes. All are biologically active, but the inhibitory effect of the isolated polysaccharides on lymphocyte proliferation was weaker, though more selective than that of the crude fraction.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2791
Author(s):  
Sylwia Gudej ◽  
Rafał Filip ◽  
Joanna Harasym ◽  
Jacek Wilczak ◽  
Katarzyna Dziendzikowska ◽  
...  

The prevalence of gastritis in humans is constantly growing and a prediction of an increase in this health problem is observed in many countries. For this reason, effective dietary therapies are sought that can alleviate the course of this disease. The objective of this study was to determine the effect of chemically pure oat beta-glucan preparations with different molar masses, low or high, used for 30 days in patients with histologically diagnosed chronic gastritis. The study enrolled 48 people of both genders of different ages recruited from 129 patients with a gastritis diagnosis. Before and after the therapy, hematological, biochemical, immunological and redox balance parameters were determined in the blood and the number of lactic acid bacteria and SCFA concentrations in the feces. Our results demonstrated a beneficial effect of oat beta-glucans with high molar mass in chronic gastritis in humans, resulting in reduced mucosal damage and healthy changes in SCFA fecal concentration and peripheral blood serum glutathione metabolism and antioxidant defense parameters. This fraction of a highly purified oat beta-glucan is safe for humans. Its action is effective after 30 days of use, which sheds new light on the nutritional treatment of chronic gastritis.


2021 ◽  
pp. 2100186
Author(s):  
Annelore Aerts ◽  
Camiel Kroonen ◽  
Jan Henk Kamps ◽  
Rint P. Sijbesma ◽  
Johan P. A. Heuts

2021 ◽  
Author(s):  
Lian R. Hutchings ◽  
Antonella Pagliarulo

AbstractThe application of temperature gradient interaction chromatography (TGIC) as an advanced technique for the characterisation of polymers is discussed, in comparison to other liquid chromatography techniques and in particular the ubiquitous size exclusion chromatography. Specifically, the use of reversed-phase TGIC for the interrogation of complex branched polymers and normal-phase TGIC for characterisation of high-molar mass end-functionalised polymers is highlighted.


Sign in / Sign up

Export Citation Format

Share Document