scholarly journals The Primitive Spectrum of a Basic Classical Lie Superalgebra

2016 ◽  
Vol 348 (2) ◽  
pp. 579-602 ◽  
Author(s):  
Kevin Coulembier
Author(s):  
M. D. Gould

AbstractPolynomial identities for the generators of a simple basic classical Lie superalgebra are derived in arbitrary representations generated by a maximal (or minimal) weight vector. The infinitesimal characters occurring in the tensor product of two finite dimensional irreducible representations are also determined.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Victor Kac ◽  
Pierluigi Möseneder Frajria ◽  
Paolo Papi

International audience We provide formulas for the Weyl-Kac denominator and superdenominator of a basic classical Lie superalgebra for a distinguished set of positive roots. \par Nous donnons les formules pour les dénominateurs et super-dénominateurs de Weyl-Kac d'une super-algèbre de Lie basique classique pour un ensemble distingué de racines positives.


Author(s):  
Nicoletta Cantarini ◽  
Fabrizio Caselli ◽  
Victor Kac

AbstractGiven a Lie superalgebra $${\mathfrak {g}}$$ g with a subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 , and a finite-dimensional irreducible $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 -module F, the induced $${\mathfrak {g}}$$ g -module $$M(F)={\mathcal {U}}({\mathfrak {g}})\otimes _{{\mathcal {U}}({\mathfrak {g}}_{\ge 0})}F$$ M ( F ) = U ( g ) ⊗ U ( g ≥ 0 ) F is called a finite Verma module. In the present paper we classify the non-irreducible finite Verma modules over the largest exceptional linearly compact Lie superalgebra $${\mathfrak {g}}=E(5,10)$$ g = E ( 5 , 10 ) with the subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 of minimal codimension. This is done via classification of all singular vectors in the modules M(F). Besides known singular vectors of degree 1,2,3,4 and 5, we discover two new singular vectors, of degrees 7 and 11. We show that the corresponding morphisms of finite Verma modules of degree 1,4,7, and 11 can be arranged in an infinite number of bilateral infinite complexes, which may be viewed as “exceptional” de Rham complexes for E(5, 10).


1992 ◽  
Vol 07 (20) ◽  
pp. 4885-4898 ◽  
Author(s):  
KATSUSHI ITO

We study the quantum Hamiltonian reduction of affine Lie algebras and the free field realization of the associated W algebra. For the nonsimply laced case this reduction does not agree with the usual coset construction of the W minimal model. In particular, we find that the coset model [Formula: see text] can be obtained through the quantum Hamiltonian reduction of the affine Lie superalgebra B(0, n)(1). To show this we also construct the Feigin-Fuchs representation of affine Lie superalgebras.


2017 ◽  
Vol 58 (11) ◽  
pp. 111701 ◽  
Author(s):  
Elena Poletaeva ◽  
Vera Serganova

1999 ◽  
Vol 14 (16) ◽  
pp. 2551-2580 ◽  
Author(s):  
JONATHAN M. EVANS ◽  
JENS OLE MADSEN

We discuss certain integrable quantum field theories in 1+1 dimensions consisting of coupled sine/sinh–Gordon theories with N=1 supersymmetry, positive kinetic energy, and bosonic potentials which are bounded from below. We show that theories of this type can be constructed as Toda models based on the exceptional affine Lie superalgebra D(2,1;α)(1) (or on related algebras which can be obtained as various limits) provided one adopts appropriate reality conditions for the fields. In particular, there is a continuous family of such models in which the couplings and mass ratios all depend on the parameter α. The structure of these models is analyzed in some detail at the classical level, including the construction of conserved currents with spins up to 4. We then show that these currents generalize to the quantum theory, thus demonstrating quantum-integrability of the models.


Sign in / Sign up

Export Citation Format

Share Document