On the Superdimension of an Irreducible Representation of a Basic Classical Lie Superalgebra

Author(s):  
Vera Serganova
Author(s):  
M. D. Gould

AbstractPolynomial identities for the generators of a simple basic classical Lie superalgebra are derived in arbitrary representations generated by a maximal (or minimal) weight vector. The infinitesimal characters occurring in the tensor product of two finite dimensional irreducible representations are also determined.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Victor Kac ◽  
Pierluigi Möseneder Frajria ◽  
Paolo Papi

International audience We provide formulas for the Weyl-Kac denominator and superdenominator of a basic classical Lie superalgebra for a distinguished set of positive roots. \par Nous donnons les formules pour les dénominateurs et super-dénominateurs de Weyl-Kac d'une super-algèbre de Lie basique classique pour un ensemble distingué de racines positives.


Author(s):  
D. L. Harper

In an earlier paper (5) we showed that a finitely generated nilpotent group which is not abelian-by-finite has a primitive irreducible representation of infinite dimension over any non-absolute field. Here we are concerned primarily with the converse question: Suppose that G is a polycyclic-by-finite group with such a representation, then what can be said about G?


Author(s):  
Nicoletta Cantarini ◽  
Fabrizio Caselli ◽  
Victor Kac

AbstractGiven a Lie superalgebra $${\mathfrak {g}}$$ g with a subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 , and a finite-dimensional irreducible $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 -module F, the induced $${\mathfrak {g}}$$ g -module $$M(F)={\mathcal {U}}({\mathfrak {g}})\otimes _{{\mathcal {U}}({\mathfrak {g}}_{\ge 0})}F$$ M ( F ) = U ( g ) ⊗ U ( g ≥ 0 ) F is called a finite Verma module. In the present paper we classify the non-irreducible finite Verma modules over the largest exceptional linearly compact Lie superalgebra $${\mathfrak {g}}=E(5,10)$$ g = E ( 5 , 10 ) with the subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 of minimal codimension. This is done via classification of all singular vectors in the modules M(F). Besides known singular vectors of degree 1,2,3,4 and 5, we discover two new singular vectors, of degrees 7 and 11. We show that the corresponding morphisms of finite Verma modules of degree 1,4,7, and 11 can be arranged in an infinite number of bilateral infinite complexes, which may be viewed as “exceptional” de Rham complexes for E(5, 10).


1987 ◽  
Vol 107 ◽  
pp. 63-68 ◽  
Author(s):  
George Kempf

Let H be the Levi subgroup of a parabolic subgroup of a split reductive group G. In characteristic zero, an irreducible representation V of G decomposes when restricted to H into a sum V = ⊕mαWα where the Wα’s are distinct irreducible representations of H. We will give a formula for the multiplicities mα. When H is the maximal torus, this formula is Weyl’s character formula. In theory one may deduce the general formula from Weyl’s result but I do not know how to do this.


2006 ◽  
Vol 20 (11n13) ◽  
pp. 1808-1818
Author(s):  
S. KUWATA ◽  
A. MARUMOTO

It is known that para-particles, together with fermions and bosons, of a single mode can be described as an irreducible representation of the Lie (super) algebra 𝔰𝔩2(ℂ) (2-dimensional special linear algebra over the complex number ℂ), that is, they satisfy the equation of motion of a harmonic oscillator. Under the equation of motion of a harmonic oscillator, we obtain the set of the commutation relations which is isomorphic to the irreducible representation, to find that the equation of motion, conversely, can be derived from the commutation relation only for the case of either fermion or boson. If Nature admits of the existence of such a sufficient condition for the equation of motion of a harmonic oscillator, no para-particle can be allowed.


2017 ◽  
Vol 69 (1) ◽  
pp. 107-129
Author(s):  
Masoud Kamgarpour

AbstractUnder the local Langlands correspondence, the conductor of an irreducible representation of Gln(F) is greater than the Swan conductor of the corresponding Galois representation. In this paper, we establish the geometric analogue of this statement by showing that the conductor of a categorical representation of the loop group is greater than the irregularity of the corresponding meromorphic connection.


Sign in / Sign up

Export Citation Format

Share Document