scholarly journals Burkholder–Davis–Gundy Inequalities in UMD Banach Spaces

2020 ◽  
Vol 379 (2) ◽  
pp. 417-459
Author(s):  
Ivan Yaroslavtsev

Abstract In this paper we prove Burkholder–Davis–Gundy inequalities for a general martingale M with values in a UMD Banach space X. Assuming that $$M_0=0$$ M 0 = 0 , we show that the following two-sided inequality holds for all $$1\le p<\infty $$ 1 ≤ p < ∞ : Here $$ \gamma ([\![M]\!]_t) $$ γ ( [ [ M ] ] t ) is the $$L^2$$ L 2 -norm of the unique Gaussian measure on X having $$[\![M]\!]_t(x^*,y^*):= [\langle M,x^*\rangle , \langle M,y^*\rangle ]_t$$ [ [ M ] ] t ( x ∗ , y ∗ ) : = [ ⟨ M , x ∗ ⟩ , ⟨ M , y ∗ ⟩ ] t as its covariance bilinear form. This extends to general UMD spaces a recent result by Veraar and the author, where a pointwise version of ($$\star $$ ⋆ ) was proved for UMD Banach functions spaces X. We show that for continuous martingales, ($$\star $$ ⋆ ) holds for all $$0<p<\infty $$ 0 < p < ∞ , and that for purely discontinuous martingales the right-hand side of ($$\star $$ ⋆ ) can be expressed more explicitly in terms of the jumps of M. For martingales with independent increments, ($$\star $$ ⋆ ) is shown to hold more generally in reflexive Banach spaces X with finite cotype. In the converse direction, we show that the validity of ($$\star $$ ⋆ ) for arbitrary martingales implies the UMD property for X. As an application we prove various Itô isomorphisms for vector-valued stochastic integrals with respect to general martingales, which extends earlier results by van Neerven, Veraar, and Weis for vector-valued stochastic integrals with respect to a Brownian motion. We also provide Itô isomorphisms for vector-valued stochastic integrals with respect to compensated Poisson and general random measures.

2003 ◽  
Vol 74 (3) ◽  
pp. 351-378 ◽  
Author(s):  
Christian Le Merdy

AbstractLet X be a Banach space with the analytic UMD property, and let A and B be two commuting sectorial operators on X which admit bounded H∞ functional calculi with respect to angles θ1 and θ2 satisfying θ1 + θ2 > π. It was proved by Kalton and Weis that in this case, A + B is closed. The first result of this paper is that under the same conditions, A + B actually admits a bounded H∞ functional calculus. Our second result is that given a Banach space X and a number 1 ≦ p < ∞, the derivation operator on the vector valued Hardy space Hp (R; X) admits a bounded H∞ functional calculus if and only if X has the analytic UMD property. This is an ‘analytic’ version of the well-known characterization of UMD by the boundedness of the H∞ functional calculus of the derivation operator on vector valued Lp-spaces Lp (R; X) for 1 < p < ∞ (Dore-Venni, Hieber-Prüss, Prüss).


CAUCHY ◽  
2017 ◽  
Vol 4 (4) ◽  
pp. 167
Author(s):  
Minanur Rohman

<p class="AbstractCxSpFirst">In this paper, we will discuss some applications of almost surjective epsilon-isometry mapping, one of them is in Lorentz space ( L_(p,q)-space). Furthermore, using some classical theorems of w star-topology and concept of closed subspace -complemented, for every almost surjective epsilon-isometry mapping  <em>f </em>: <em>X to</em><em> Y</em>, where <em>Y</em> is a reflexive Banach space, then there exists a bounded linear operator   <em>T</em> : <em>Y to</em><em> X</em>  with  such that</p><p class="AbstractCxSpMiddle">  </p><p class="AbstractCxSpLast">for every x in X.</p>


2002 ◽  
Vol 54 (6) ◽  
pp. 1165-1186 ◽  
Author(s):  
Oscar Blasco ◽  
José Luis Arregui

AbstractLet X be a complex Banach space and let Bp(X) denote the vector-valued Bergman space on the unit disc for 1 ≤ p < ∞. A sequence (Tn)n of bounded operators between two Banach spaces X and Y defines a multiplier between Bp(X) and Bq(Y) (resp. Bp(X) and lq(Y)) if for any function we have that belongs to Bq(Y) (resp. (Tn(xn))n ∈ lq(Y)). Several results on these multipliers are obtained, some of them depending upon the Fourier or Rademacher type of the spaces X and Y. New properties defined by the vector-valued version of certain inequalities for Taylor coefficients of functions in Bp(X) are introduced.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
F. Baudier ◽  
G. Lancien

Abstract We introduce the notions of almost Lipschitz embeddability and nearly isometric embeddability. We prove that for p ∈ [1,∞], every proper subset of Lp is almost Lipschitzly embeddable into a Banach space X if and only if X contains uniformly the ℓpn’s. We also sharpen a result of N. Kalton by showing that every stable metric space is nearly isometrically embeddable in the class of reflexive Banach spaces.


1989 ◽  
Vol 31 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Hans Jarchow

Let K be a compact Hausdorff space, and let C(K) be the corresponding Banach space of continuous functions on K. It is well-known that every 1-summing operator S:C(K)→l2 is also nuclear, and therefore factors S = S1S2, with S1:l2→l2 a Hilbert–Schmidt operator and S1:C(K)→l2 a bounded operator. It is easily seen that this latter property is preserved when C(K) is replaced by any quotient, and that a Banach space X enjoys this property if and only if its second dual, X**, does. This led A. Pełczyński [15] to ask if the second dual of a Banach space X must be isomorphic to a quotient of a C(K)-space if X has the property that every 1-summing operator X-→l2 factors through a Hilbert-Schmidt operator. In this paper, we shall first of all reformulate the question in an appropriate manner and then show that counter-examples are available among super-reflexive Tsirelson-like spaces as well as among quasi-reflexive Banach spaces.


Author(s):  
P. N. Dowling ◽  
C. J. Lennard

AbstractIn [8] Partington showed that a Banach space X is uniformly convex if and only if Lp([0, 1], X) has the uniform Kadec–Klee–Huff property with respect to the weak topology (UKKH (weak)), where 1 < p < ∞. In this note we will characterize the Banach spaces X such that HP(D, X) has UKKH (weak), where 1 ≤ p < ∞. Similar results for UKKH (weak*) are also obtained. These results (and proofs) are quite different from Partington's result (and proof).


1975 ◽  
Vol 12 (3) ◽  
pp. 407-416 ◽  
Author(s):  
Ivan Singer

We prove that if E is a Banach space which has a subspace G such that the conjugate space G* contains a proper norm closed linear subspace V of characteristic 1, then E** is not smooth and there exist in πE(E) points of non-smoothness for E**, where πE: E → E** is the canonical embedding. We show that the spaces E having such a subspace G constitute a large proper subfamily of the family of all non-reflexive Banach spaces.


1996 ◽  
Vol 39 (3) ◽  
pp. 485-490 ◽  
Author(s):  
N. H. Asmar ◽  
B. P. Kelly ◽  
S. Montgomery-Smith

A Banach space X is called an HT space if the Hilbert transform is bounded from Lp(X) into Lp(X), where 1 < p < ∞. We introduce the notion of an ACF Banach space, that is, a Banach space X for which we have an abstract M. Riesz Theorem for conjugate functions in Lp(X), 1 < p < ∞. Berkson, Gillespie and Muhly [5] showed that X ∈ HT ⇒ X ∈ ACF. In this note, we will show that X ∈ ACF ⇒ X ∈ UMD, thus providing a new proof of Bourgain's result X ∈ HT ⇒ X ∈ UMD.


Author(s):  
Félix Cabello Sánchez

Abstract The paper alluded to in the title contains the following striking result: Let $I$ be the unit interval and $\Delta$ the Cantor set. If $X$ is a quasi Banach space containing no copy of $c_{0}$ which is isomorphic to a closed subspace of a space with a basis and $C(I,\,X)$ is linearly homeomorphic to $C(\Delta ,\, X)$ , then $X$ is locally convex, i.e., a Banach space. We will show that Kalton result is sharp by exhibiting non-locally convex quasi Banach spaces $X$ with a basis for which $C(I,\,X)$ and $C(\Delta ,\, X)$ are isomorphic. Our examples are rather specific and actually, in all cases, $X$ is isomorphic to $C(K,\,X)$ if $K$ is a metric compactum of finite covering dimension.


Sign in / Sign up

Export Citation Format

Share Document