scholarly journals Asymptotic Optimality of the Triangular Lattice for a Class of Optimal Location Problems

Author(s):  
David P. Bourne ◽  
Riccardo Cristoferi

AbstractWe prove an asymptotic crystallization result in two dimensions for a class of nonlocal particle systems. To be precise, we consider the best approximation with respect to the 2-Wasserstein metric of a given absolutely continuous probability measure $$f \mathrm {d}x$$ f d x by a discrete probability measure $$\sum _i m_i \delta _{z_i}$$ ∑ i m i δ z i , subject to a constraint on the particle sizes $$m_i$$ m i . The locations $$z_i$$ z i of the particles, their sizes $$m_i$$ m i , and the number of particles are all unknowns of the problem. We study a one-parameter family of constraints. This is an example of an optimal location problem (or an optimal sampling or quantization problem) and it has applications in economics, signal compression, and numerical integration. We establish the asymptotic minimum value of the (rescaled) approximation error as the number of particles goes to infinity. In particular, we show that for the constrained best approximation of the Lebesgue measure by a discrete measure, the discrete measure whose support is a triangular lattice is asymptotically optimal. In addition, we prove an analogous result for a problem where the constraint is replaced by a penalization. These results can also be viewed as the asymptotic optimality of the hexagonal tiling for an optimal partitioning problem. They generalise the crystallization result of Bourne et al. (Commun Math Phys, 329: 117–140, 2014) from a single particle system to a class of particle systems, and prove a case of a conjecture by Bouchitté et al. (J Math Pures Appl, 95:382–419, 2011). Finally, we prove a crystallization result which states that optimal configurations with energy close to that of a triangular lattice are geometrically close to a triangular lattice.

1979 ◽  
Vol 11 (02) ◽  
pp. 355-383 ◽  
Author(s):  
Richard Durrett

The models under consideration are a class of infinite particle systems which can be written as a superposition of branching random walks. This paper gives some results about the limiting behavior of the number of particles in a compact set ast→ ∞ and also gives both sufficient and necessary conditions for the existence of a non-trivial translation-invariant stationary distribution.


1998 ◽  
Vol 35 (3) ◽  
pp. 633-641 ◽  
Author(s):  
Yoshiaki Itoh ◽  
Colin Mallows ◽  
Larry Shepp

We introduce a new class of interacting particle systems on a graph G. Suppose initially there are Ni(0) particles at each vertex i of G, and that the particles interact to form a Markov chain: at each instant two particles are chosen at random, and if these are at adjacent vertices of G, one particle jumps to the other particle's vertex, each with probability 1/2. The process N enters a death state after a finite time when all the particles are in some independent subset of the vertices of G, i.e. a set of vertices with no edges between any two of them. The problem is to find the distribution of the death state, ηi = Ni(∞), as a function of Ni(0).We are able to obtain, for some special graphs, the limiting distribution of Ni if the total number of particles N → ∞ in such a way that the fraction, Ni(0)/S = ξi, at each vertex is held fixed as N → ∞. In particular we can obtain the limit law for the graph S2, the two-leaf star which has three vertices and two edges.


1998 ◽  
Vol 35 (03) ◽  
pp. 633-641 ◽  
Author(s):  
Yoshiaki Itoh ◽  
Colin Mallows ◽  
Larry Shepp

We introduce a new class of interacting particle systems on a graph G. Suppose initially there are N i (0) particles at each vertex i of G, and that the particles interact to form a Markov chain: at each instant two particles are chosen at random, and if these are at adjacent vertices of G, one particle jumps to the other particle's vertex, each with probability 1/2. The process N enters a death state after a finite time when all the particles are in some independent subset of the vertices of G, i.e. a set of vertices with no edges between any two of them. The problem is to find the distribution of the death state, η i = N i (∞), as a function of N i (0). We are able to obtain, for some special graphs, the limiting distribution of N i if the total number of particles N → ∞ in such a way that the fraction, N i (0)/S = ξ i , at each vertex is held fixed as N → ∞. In particular we can obtain the limit law for the graph S 2, the two-leaf star which has three vertices and two edges.


1979 ◽  
Vol 11 (2) ◽  
pp. 355-383 ◽  
Author(s):  
Richard Durrett

The models under consideration are a class of infinite particle systems which can be written as a superposition of branching random walks. This paper gives some results about the limiting behavior of the number of particles in a compact set as t → ∞ and also gives both sufficient and necessary conditions for the existence of a non-trivial translation-invariant stationary distribution.


2015 ◽  
Author(s):  
Γεώργιος Παπαγιάννης

The main aim of the present thesis is to investigate the effect of diverging priors concerning model uncertainty on decision making. One of the main issues in the thesis is to assess the effect of different notions of distance in the space of probability measures and their use as loss functionals in the process of identifying the best suited model among a set of plausible priors. Another issue, is that of addressing the problem of ``inhomogeneous" sets of priors, i.e. sets of priors that highly divergent opinions may occur, and the need to robustly treat that case. As high degrees of inhomogeneity may lead to distrust of the decision maker to the priors it may be desirable to adopt a particular prior corresponding to the set which somehow minimizes the ``variability" among the models on the set. This leads to the notion of Frechet risk measure. Finally, an important problem is the actual calculation of robust risk measures. An account of their variational definition, the problem of calculation leads to the numerical treatment of problems of the calculus of variations for which reliable and effective algorithms are proposed. The contributions of the thesis are presented in the following three chapters. In Chapter 2, a statistical learning scheme is introduced for constructing the best model compatible with a set of priors provided by different information sources of varying reliability. As various priors may model well different aspects of the phenomenon the proposed scheme is a variational scheme based on the minimization of a weighted loss function in the space of probability measures which in certain cases is shown to be equivalent to weighted quantile averaging schemes. Therefore in contrast to approaches such as minimax decision theory in which a particular element of the prior set is chosen we construct for each prior set a probability measure which is not necessarily an element of it, a fact that as shown may lead to better description of the phenomenon in question. While treating this problem we also address the issue of the effect of the choice of distance functional in the space of measures on the problem of model selection. One of the key findings in this respect is that the class of Wasserstein distances seems to have the best performance as compared to other distances such as the KL-divergence. In Chapter 3, motivated by the results of Chapter 2, we treat the problem of specifying the risk measure for a particular loss when a set of highly divergent priors concerning the distribution of the loss is available. Starting from the principle that the ``variability" of opinions is not welcome, a fact for which a strong axiomatic framework is provided (see e.g. Klibanoff (2005) and references therein) we introduce the concept of Frechet risk measures, which corresponds to a minimal variance risk measure. Here we view a set of priors as a discrete measure on the space of probability measures and by variance we mean the variance of this discrete probability measure. This requires the use of the concept of Frechet mean. By different metrizations of the space of probability measures we define a variety of Frechet risk measures, the Wasserstein, the Hellinger and the weighted entropic risk measure, and illustrate their use and performance via an example related to the static hedging of derivatives under model uncertainty. In Chapter 4, we consider the problem of numerical calculation of convex risk measures applying techniques from the calculus of variations. Regularization schemes are proposed and the theoretical convergence of the algorithms is considered.


1995 ◽  
Vol 27 (01) ◽  
pp. 102-119 ◽  
Author(s):  
Wolfgang Weil

A stationary (but not necessarily isotropic) Boolean model Y in the plane is considered as a model for overlapping particle systems. The primary grain (i.e. the typical particle) is assumed to be simply connected, but no convexity assumptions are made. A new method is presented to estimate the intensity y of the underlying Poisson process (i.e. the mean number of particles per unit area) from measurements on the union set Y. The method is based mainly on the concept of convexification of a non-convex set, it also produces an unbiased estimator for a (suitably defined) mean body of Y, which in turn makes it possible to estimate the mean grain of the particle process.


2019 ◽  
Vol 372 (1) ◽  
pp. 1-69 ◽  
Author(s):  
Maximilian Jeblick ◽  
Nikolai Leopold ◽  
Peter Pickl

Abstract We present microscopic derivations of the defocusing two-dimensional cubic nonlinear Schrödinger equation and the Gross–Pitaevskii equation starting from an interacting N-particle system of bosons. We consider the interaction potential to be given either by $$W_\beta (x)=N^{-1+2 \beta }W(N^\beta x)$$Wβ(x)=N-1+2βW(Nβx), for any $$\beta >0$$β>0, or to be given by $$V_N(x)=e^{2N} V(e^N x)$$VN(x)=e2NV(eNx), for some spherical symmetric, nonnegative and compactly supported $$W,V \in L^\infty ({\mathbb {R}}^2,{\mathbb {R}})$$W,V∈L∞(R2,R). In both cases we prove the convergence of the reduced density corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in trace norm. For the latter potential $$V_N$$VN we show that it is crucial to take the microscopic structure of the condensate into account in order to obtain the correct dynamics.


1988 ◽  
Vol 25 (04) ◽  
pp. 733-743 ◽  
Author(s):  
David Balding

One-dimensional, periodic and annihilating systems of Brownian motions and random walks are defined and interpreted in terms of sizeless particles which vanish on contact. The generating function and moments of the number pairs of particles which have vanished, given an arbitrary initial arrangement, are derived in terms of known two-particle survival probabilities. Three important special cases are considered: Brownian motion with the particles initially (i) uniformly distributed and (ii) equally spaced on a circle and (iii) random walk on a lattice with initially each site occupied. Results are also given for the infinite annihilating particle systems obtained in the limit as the number of particles and the size of the circle or lattice increase. Application of the results to the theory of diffusion-limited reactions is discussed.


1988 ◽  
Vol 25 (4) ◽  
pp. 733-743 ◽  
Author(s):  
David Balding

One-dimensional, periodic and annihilating systems of Brownian motions and random walks are defined and interpreted in terms of sizeless particles which vanish on contact. The generating function and moments of the number pairs of particles which have vanished, given an arbitrary initial arrangement, are derived in terms of known two-particle survival probabilities. Three important special cases are considered: Brownian motion with the particles initially (i) uniformly distributed and (ii) equally spaced on a circle and (iii) random walk on a lattice with initially each site occupied. Results are also given for the infinite annihilating particle systems obtained in the limit as the number of particles and the size of the circle or lattice increase. Application of the results to the theory of diffusion-limited reactions is discussed.


Sign in / Sign up

Export Citation Format

Share Document