Eigenvalues of the Dirac Operator on Manifolds¶with Boundary

2001 ◽  
Vol 221 (2) ◽  
pp. 255-265 ◽  
Author(s):  
Oussama Hijazi ◽  
Sebastián Montiel ◽  
Xiao Zhang
2015 ◽  
Vol 12 (05) ◽  
pp. 1550064 ◽  
Author(s):  
Jian Wang ◽  
Yong Wang

The Kastler–Kalau–Walze theorem, announced by A. Connes, shows that the Wodzicki residue of the inverse square of the Dirac operator is proportional to the Einstein–Hilbert action of general relativity. In this paper, we prove a Kastler–Kalau–Walze type theorem for five-dimensional manifolds with boundary.


2014 ◽  
Vol 06 (03) ◽  
pp. 339-382
Author(s):  
Mattias Dahl ◽  
Nadine Grosse

For spin manifolds with boundary we consider Riemannian metrics which are product near the boundary and are such that the corresponding Dirac operator is invertible when half-infinite cylinders are attached at the boundary. The main result of this paper is that these properties of a metric can be preserved when the metric is extended over a handle of codimension at least two attached at the boundary. Applications of this result include the construction of non-isotopic metrics with invertible Dirac operator, and a concordance existence and classification theorem.


2005 ◽  
Vol 315 (2) ◽  
pp. 467-487 ◽  
Author(s):  
A. Kirchberg ◽  
J.D. Länge ◽  
A. Wipf
Keyword(s):  

Author(s):  
Kazuo Akutagawa

AbstractWe show a kind of Obata-type theorem on a compact Einstein n-manifold $$(W, \bar{g})$$ ( W , g ¯ ) with smooth boundary $$\partial W$$ ∂ W . Assume that the boundary $$\partial W$$ ∂ W is minimal in $$(W, \bar{g})$$ ( W , g ¯ ) . If $$(\partial W, \bar{g}|_{\partial W})$$ ( ∂ W , g ¯ | ∂ W ) is not conformally diffeomorphic to $$(S^{n-1}, g_S)$$ ( S n - 1 , g S ) , then for any Einstein metric $$\check{g} \in [\bar{g}]$$ g ˇ ∈ [ g ¯ ] with the minimal boundary condition, we have that, up to rescaling, $$\check{g} = \bar{g}$$ g ˇ = g ¯ . Here, $$g_S$$ g S and $$[\bar{g}]$$ [ g ¯ ] denote respectively the standard round metric on the $$(n-1)$$ ( n - 1 ) -sphere $$S^{n-1}$$ S n - 1 and the conformal class of $$\bar{g}$$ g ¯ . Moreover, if we assume that $$\partial W \subset (W, \bar{g})$$ ∂ W ⊂ ( W , g ¯ ) is totally geodesic, we also show a Gursky-Han type inequality for the relative Yamabe constant of $$(W, \partial W, [\bar{g}])$$ ( W , ∂ W , [ g ¯ ] ) .


Author(s):  
Piero D’Ancona ◽  
Luca Fanelli ◽  
Nico Michele Schiavone

AbstractWe prove that the eigenvalues of the n-dimensional massive Dirac operator $${\mathscr {D}}_0 + V$$ D 0 + V , $$n\ge 2$$ n ≥ 2 , perturbed by a potential V, possibly non-Hermitian, are contained in the union of two disjoint disks of the complex plane, provided V is sufficiently small with respect to the mixed norms $$L^1_{x_j} L^\infty _{{\widehat{x}}_j}$$ L x j 1 L x ^ j ∞ , for $$j\in \{1,\dots ,n\}$$ j ∈ { 1 , ⋯ , n } . In the massless case, we prove instead that the discrete spectrum is empty under the same smallness assumption on V, and in particular the spectrum coincides with the spectrum of the unperturbed operator: $$\sigma ({\mathscr {D}}_0+V)=\sigma ({\mathscr {D}}_0)={\mathbb {R}}$$ σ ( D 0 + V ) = σ ( D 0 ) = R . The main tools used are an abstract version of the Birman–Schwinger principle, which allows in particular to control embedded eigenvalues, and suitable resolvent estimates for the Schrödinger operator.


Sign in / Sign up

Export Citation Format

Share Document