scholarly journals Quantum cohomology of the Hilbert scheme of points in the plane

2009 ◽  
Vol 179 (3) ◽  
pp. 523-557 ◽  
Author(s):  
A. Okounkov ◽  
R. Pandharipande
2019 ◽  
Vol 7 ◽  
Author(s):  
RAHUL PANDHARIPANDE ◽  
HSIAN-HUA TSENG

We study the higher genus equivariant Gromov–Witten theory of the Hilbert scheme of $n$ points of $\mathbb{C}^{2}$ . Since the equivariant quantum cohomology, computed by Okounkov and Pandharipande [Invent. Math. 179 (2010), 523–557], is semisimple, the higher genus theory is determined by an $\mathsf{R}$ -matrix via the Givental–Teleman classification of Cohomological Field Theories (CohFTs). We uniquely specify the required $\mathsf{R}$ -matrix by explicit data in degree $0$ . As a consequence, we lift the basic triangle of equivalences relating the equivariant quantum cohomology of the Hilbert scheme $\mathsf{Hilb}^{n}(\mathbb{C}^{2})$ and the Gromov–Witten/Donaldson–Thomas correspondence for 3-fold theories of local curves to a triangle of equivalences in all higher genera. The proof uses the analytic continuation of the fundamental solution of the QDE of the Hilbert scheme of points determined by Okounkov and Pandharipande [Transform. Groups 15 (2010), 965–982]. The GW/DT edge of the triangle in higher genus concerns new CohFTs defined by varying the 3-fold local curve in the moduli space of stable curves. The equivariant orbifold Gromov–Witten theory of the symmetric product $\mathsf{Sym}^{n}(\mathbb{C}^{2})$ is also shown to be equivalent to the theories of the triangle in all genera. The result establishes a complete case of the crepant resolution conjecture [Bryan and Graber, Algebraic Geometry–Seattle 2005, Part 1, Proceedings of Symposia in Pure Mathematics, 80 (American Mathematical Society, Providence, RI, 2009), 23–42; Coates et al., Geom. Topol. 13 (2009), 2675–2744; Coates & Ruan, Ann. Inst. Fourier (Grenoble) 63 (2013), 431–478].


2009 ◽  
Vol 145 (5) ◽  
pp. 1249-1276 ◽  
Author(s):  
Davesh Maulik ◽  
Alexei Oblomkov

AbstractWe study the relative Donaldson–Thomas theory of 𝒜n×P1, where 𝒜n is the surface resolution of type An singularity. The action of divisor operators in the theory is expressed in terms of operators of the affine algebra $\glh $ on Fock space. Assuming a nondegeneracy conjecture, this gives a complete solution for the theory. The results complete the comparison of this theory with the Gromov–Witten theory of 𝒜n×P1 and the quantum cohomology of the Hilbert scheme of points on 𝒜n.


1998 ◽  
Vol 13 (34) ◽  
pp. 2731-2742 ◽  
Author(s):  
YUTAKA MATSUO

We give a reinterpretation of the matrix theory discussed by Moore, Nekrasov and Shatashivili (MNS) in terms of the second quantized operators which describes the homology class of the Hilbert scheme of points on surfaces. It naturally relates the contribution from each pole to the inner product of orthogonal basis of free boson Fock space. These bases can be related to the eigenfunctions of Calogero–Sutherland (CS) equation and the deformation parameter of MNS is identified with coupling of CS system. We discuss the structure of Virasoro symmetry in this model.


2020 ◽  
Vol 8 ◽  
Author(s):  
Burt Totaro

Abstract We show that if X is a smooth complex projective surface with torsion-free cohomology, then the Hilbert scheme $X^{[n]}$ has torsion-free cohomology for every natural number n. This extends earlier work by Markman on the case of Poisson surfaces. The proof uses Gholampour-Thomas’s reduced obstruction theory for nested Hilbert schemes of surfaces.


1988 ◽  
Vol 91 (2) ◽  
pp. 365-370 ◽  
Author(s):  
Geir Ellingsrud ◽  
Stein Arild Str�mme

2019 ◽  
Vol 220 (2) ◽  
pp. 581-610 ◽  
Author(s):  
Joachim Jelisiejew

2013 ◽  
Vol 149 (3) ◽  
pp. 481-494 ◽  
Author(s):  
François Charles ◽  
Eyal Markman

AbstractWe prove the standard conjectures for complex projective varieties that are deformations of the Hilbert scheme of points on a K3 surface. The proof involves Verbitsky’s theory of hyperholomorphic sheaves and a study of the cohomology algebra of Hilbert schemes of K3 surfaces.


1987 ◽  
Vol 87 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Geir Ellingsrud ◽  
Stein Arild Str�mme

Sign in / Sign up

Export Citation Format

Share Document