scholarly journals Whole-Exome Sequencing Identifies Novel Compound Heterozygous ZNF469 Mutations in Two Siblings with Mild Brittle Cornea Syndrome

2020 ◽  
Vol 107 (3) ◽  
pp. 294-299
Author(s):  
Tim Rolvien ◽  
Uwe Kornak ◽  
Stephan J. Linke ◽  
Michael Amling ◽  
Ralf Oheim
2017 ◽  
Vol 60 (12) ◽  
pp. 635-638 ◽  
Author(s):  
Ryojun Takeda ◽  
Masaki Takagi ◽  
Hiroyuki Shinohara ◽  
Hiroshi Futagawa ◽  
Satoshi Narumi ◽  
...  

2020 ◽  
Vol 8 ◽  
pp. 205031212092265
Author(s):  
Adiratna Mat Ripen ◽  
Hamidah Ghani ◽  
Chai Teng Chear ◽  
Mei Yee Chiow ◽  
Sharifah Nurul Husna Syed Yahya ◽  
...  

Objectives: A pair of female Malay monozygotic twins who presented with recurrent upper respiratory tract infections, hepatosplenomegaly, bronchiectasis and bicytopenia were recruited in this study. Both patients were suspected with primary immunodeficiency diseases. However, the definite diagnosis was not clear due to complex disease phenotypes. The objective of this study was to identify the causative gene mutation in these patients. Methods: Lymphocyte subset enumeration test and whole exome sequencing were performed. Results: We identified a compound heterozygous CR2 mutation (c.1916G>A and c.2012G>A) in both patients. These variants were then confirmed using Sanger sequencing. Conclusion: Whole exome sequencing analysis of the monozygotic twins revealed compound heterozygous missense mutations in CR2.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1034-1034
Author(s):  
Tomas Racek ◽  
Jacek Puchalka ◽  
Naschla Kohistani ◽  
Christoph Klein

Abstract Congenital neutropenia (CN) is a heterogeneous disorder. More than 30 distinct genetic defects have been discovered in patients with genetic diseases associated with decreased numbers of peripheral neutrophil granulocytes. Currently, most molecular diagnostic laboratories use Sanger-based sequencing techniques to define disease-causing mutations in patients with CN. In approximately 50% of patients no known genetic disorder can be found. To identify novel genes that can be causative for unexplained CN cases we embarked on next-generation whole-exome sequencing using SOLiD 5500™ and Ion Proton™ sequencers. Up to date we sequenced whole exomes of 49 families, in which children were diagnosed with CN. The fragment libraries were constructed using the SureSelect™ V4+UTRs System (Agilent) allowing us to target whole coding sequence and the majority of UTRs of human genome (approx. 71 Mb). The vast majority of the families were analysed in the “Trio” approach and suitable homozygous or compound heterozygous rare variations (frequency below 1%) in protein coding regions or in splice sites were chosen for further validations. In seven cases mutations previously described as causative for neutropenia were identified including G6PC3, HAX1, and ELANE. Four other rare variants are currently being analysed for their potential to cause CN. In 35 patients, no plausible candidate could be identified so far. When we assessed variants within the genes related to CN, our data revealed unequal coverage pattern over these genes. Around 10% of the exons were insufficiently covered (coverage of less than 10) to allow for reliable variant and genotype call. These facts limit the power of whole exome sequencing as a diagnostic tool, as mutations at the non-covered positions cannot be ruled out, and demonstrate the need of an alternative comprehensive approach. We are currently assessing sensitivity and specificity of a robust, rapid, and cost-effective approach that comprehensively analyses the sequence of 34 CN-relevant genes. Our approach is based on enrichment of specific exon regions by amplification using custom made AmpliSeq™ (Life Technologies) panel. For 25 genes we are able to sequence coding region as well as both UTR sequences, for 9 genes sequencing is limited to coding regions. This approach will provide a reliable, quick, and inexpensive diagnostic strategy for CN patients which will be offered free-of-charge to patients worldwide, independent of ethnic, national, or financial considerations. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Estephania Candelo ◽  
Lorena Diaz-Ordoñez ◽  
Rafael Pacheco ◽  
Emelina Ruiz ◽  
Harry Pachajoa

Abstract Introduction: Usher syndrome has a broad phenotypic and genotypic spectrum. Developmental and epileptic encephalopathy-52 (DEE52) is a sever autosomal recessive seizure disorder that is characterized by infantile onset of refractory seizures, consequently resulting in delayed global development. This study aimed to describe the clinical features and to investigate the four variants identified in a Colombian family with Usher syndrome and KCNC2 encephalopathy syndrome.Methods and Results: We present a case of a family with two clinically relevant phenotypes: a mother with a compound heterozygous mutation causing Usher Syndrome, type IIC (USH2C) and her 15-year-old son who carried one heterozygous variant in the KCNC2 gene (p.P470S) and two cis mutations (p.V2927I and p.Q4955EfsTer10) in the ADGRV1 gene segregated from his mother, and a second non-disrupted allele. Owing to this, the boy did not present with USH2C but presented a developmental epilepsy syndrome. His younger sibling was unaffected, although he did inherit the trans mutation in a single pathogenic allele from his mother.Discussion and Conclusion: Whole-exome sequencing helps detect genes related to known and novel hearing loss and seizure syndrome. However, familiar segregation studies are an excellent method to clarify genotype-phenotype correlation in families, where multiple genes of clinically relevant have been identified. This method helps determine the genotype-phenotype relationship of a disease, which is associated with the clinical presentation and determines the pathogenicity of variants that are classified as variants of uncertain clinical significance.


Sign in / Sign up

Export Citation Format

Share Document