Multi-decadal decline in reef fish abundance and species richness in the southeast USA assessed by standardized trap catches

2016 ◽  
Vol 163 (2) ◽  
Author(s):  
Nathan M. Bacheler ◽  
Tracey I. Smart
2011 ◽  
Vol 9 (4) ◽  
pp. 869-879 ◽  
Author(s):  
Paulo R. Medeiros ◽  
Ricardo S. Rosa ◽  
Ronaldo B. Francini-Filho

In recent years, many studies investigated how density-dependent factors, such as shortages in microhabitat and food availability influence the structure of reef fish assemblages. Most of what is currently known, however, comes from comparisons of isolated patch reefs and from correlations between fish abundance and one or few microhabitat variables. In addition, most studies were done in the Caribbean and Indo-Pacific regions, whereas the South Atlantic region has been, to date, understudied. The present study evaluated spatial and temporal variations in reef fish abundance and species richness in a continuous rocky reef and adjacent unconsolidated habitats in a Southwestern Atlantic reef, using underwater techniques to assess both fish numbers and microhabitat variables (depth, rugosity, number of crevices and percent cover of live benthic organisms, bare rock, sand, and limestone). Higher species richness was observed at consolidated substratum stations on both sampling periods (May and October), but fish abundance did not show a significant spatial variation. Topographical complexity and percent cover of algae (except coralline algae) were amongst the most important determinants of species richness, and correlations between fish size and refuge crevice size were observed. The non-random patterns of spatial variation in species richness, and to a lesser extent, fish abundance, were related to differences in substratum characteristics and the inherent characteristics of fishes (i.e. habitat preferences) and not to geographical barriers restraining fish movement. This study highlights the importance of concomitantly assessing several microhabitat variables to determine their relative influence in reef fish assemblages.


2014 ◽  
Vol 61 (4) ◽  
pp. 375-384 ◽  
Author(s):  
Pedro Henrique Cipresso Pereira ◽  
Rodrigo Lima Moraes ◽  
Marcus Vinicius Bezerra dos Santos ◽  
Daniel Lino Lippi ◽  
João Lucas Leão Feitosa ◽  
...  

PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1459 ◽  
Author(s):  
Elena L.E.S. Wagner ◽  
Dominique G. Roche ◽  
Sandra A. Binning ◽  
Sharon Wismer ◽  
Redouan Bshary

Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse,Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region.


2021 ◽  
Vol 674 (1) ◽  
pp. 012032
Author(s):  
M Ulfah ◽  
R K Isfani ◽  
Indra ◽  
I N Turnip ◽  
R Dirgantara
Keyword(s):  

2018 ◽  
Vol 28 (3) ◽  
pp. 315-327 ◽  
Author(s):  
D. R. Barneche ◽  
E. L. Rezende ◽  
V. Parravicini ◽  
E. Maire ◽  
G. J. Edgar ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e84344 ◽  
Author(s):  
Delphine Mallet ◽  
Laurent Wantiez ◽  
Soazig Lemouellic ◽  
Laurent Vigliola ◽  
Dominique Pelletier

2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Mahmudin Mahmudin ◽  
Chair Rani ◽  
Hamzah Hamzah

Dynamite fishing is one of the causes of damage to the coral reef ecosystem in Indonesia. Fishing activities using explosives (dynamite fishing) occur because of the desire of fishermen to get a lot of catch with low cost in a short time. Kapoposang Water Park (WP) is a region rich in marine biological resources. However, dynamite fishing activities which are still found within the area have caused the coral reef ecosystem to be severely damaged. The results showed a lower difference in the percentage of live coral cover at dynamite fishing locations (DF1, DF2) compared to control locations (K1, K2). In addition, the highest average values of coral fish abundance were found at locations K1, DF1, and DF2. Conversely, the results of the analysis found the lowest fish abundance at the K2 location. Different from the average number of reef fish species that were higher at the control location (K1, K2) compared to dynamite fishing locations (DF1, DF2). For the target fish biomass there is no real difference between the control location and dynamite fishing.


Coral Reefs ◽  
2020 ◽  
Author(s):  
Dominic A. Andradi-Brown ◽  
Angela J. E. Beer ◽  
Luigi Colin ◽  
Hastuti ◽  
Catherine E. I. Head ◽  
...  

Abstract Mesophotic coral ecosystems (MCEs; reefs 30–150 m depth) are poorly studied, with existing research heavily geographically biased away from the most species-rich reef regions. Yet, MCEs are of high interest because of their unique species and potential to act as refuges from the impacts of fishing. Using baited remote underwater video systems, we surveyed reef fish communities from 2 to 85 m depths throughout the Raja Ampat archipelago in West Papua, Indonesia—an area considered the heart of the Coral Triangle where coral reef biodiversity is greatest. We sought to provide the first assessment of fish communities across this depth gradient in the region and identify whether human population density and market access differently affected fish abundance based on depth. Here we show that—similar to shallow reefs—Raja Ampat MCEs are exceptionally diverse, with 152 fish species recorded at depths greater than 40 m. We found that fish community structures were highly depth driven, with declines in fish abundance at increased depth. In contrast to previous studies elsewhere in the world, we found that the proportion of planktivores declined across the shallow reef to MCE depth gradient. While greater human population density correlated with lower Epinephelidae and Lutjanidae abundance (two key fisheries families), we did not find evidence that MCEs provide a depth refuge from fishing. Surprisingly, we also found that fish abundance declined at greater distances from the major regional market—likely caused by historical fisheries pressure in more remote areas. These results both expand upon and contrast some previously established MCE-depth patterns and human impact patterns on fish communities, suggesting that regional context and historical pressures matters. Our findings highlight the need for future MCE studies within the Coral Triangle region.


2006 ◽  
Vol 63 (5) ◽  
pp. 775-784 ◽  
Author(s):  
Dan Wilhelmsson ◽  
Torleif Malm ◽  
Marcus C. Öhman

Abstract A significant expansion of offshore windpower is expected in northwestern Europe in the near future. Little is known about the impacts it may have on the marine environment. Here, we investigate the potential for wind turbines to function as artificial reefs and fish aggregation devices (FADs), i.e. whether they would locally increase fish densities or alter fish assemblages. Fish communities and habitat composition were investigated using visual transects at two windpower farms off the southeastern coast of Sweden, central Baltic Sea. Fish abundance was greater in the vicinity of the turbines than in surrounding areas, while species richness and Shannon–Wiener diversity (H′) were similar. On the monopiles of the turbines, fish community structure was different, and total fish abundance was greater, while species richness and diversity (H′) were lower than on the surrounding seabed. Blue mussels and barnacles covered most of the submerged parts of the turbines. On the seabed, more blue mussels and a lesser cover of red algae were recorded around the power plants than elsewhere. Results from this study suggest that offshore windfarms may function as combined artificial reefs and fish aggregation devices for small demersal fish.


Sign in / Sign up

Export Citation Format

Share Document