scholarly journals Did the animal move? A cross-wavelet approach to geolocation data reveals year-round whereabouts of a resident seabird

2021 ◽  
Vol 168 (7) ◽  
Author(s):  
Amédée Roy ◽  
Karine Delord ◽  
Guilherme T. Nunes ◽  
Christophe Barbraud ◽  
Leandro Bugoni ◽  
...  
Keyword(s):  
The Holocene ◽  
2021 ◽  
pp. 095968362199466
Author(s):  
Nannan Li ◽  
Arash Sharifi ◽  
Frank M Chambers ◽  
Yong Ge ◽  
Nathalie Dubois ◽  
...  

High-resolution proxy-based paleoenvironmental records derived from peatlands provide important insights into climate changes over centennial to millennial timescales. In this study, we present a composite climatic index (CCI) for the Hani peatland from northeastern China, based on an innovative combination of pollen-spore, phytolith, and grain size data. We use the CCI to reconstruct variations of the East Asian summer monsoon (EASM) intensity during the Holocene. This is accomplished with complete ensemble empirical mode decomposition (CEEMD), REDFIT, and cross-wavelet coherency analysis to reveal the periodicities (frequencies) of the multi-proxy derived CCI sequences and to assess potential external forcing of the EASM. The results showed that periodicities of ca. 300–350, 475, 600, 1075, and 1875 years were present in the Hani CCI sequence. Those periodicities are consistent with previously published periodicities in East Asia, indicating they are a product of external climate controls over an extensive region, rather than random variations caused by peatland-specific factors. Cross-wavelet coherency analysis between the decomposed CCI components and past solar activity reconstructions suggests that variations of solar irradiation are most likely responsible for the cyclic characteristics at 500-year frequency. We propose a conceptual model to interpret how the sun regulates the monsoon climate via coupling with oceanic and atmospheric circulations. It seems that slight solar irradiation changes can be amplified by coupling with ENSO events, which result in a significant impact on the regional climate in the East Asian monsoon area.


2021 ◽  
Author(s):  
Sujan Prasad Gautam ◽  
Ashok Silwal ◽  
Prakash Poudel ◽  
Monika Karki ◽  
Binod Adhikari ◽  
...  

Author(s):  
Priyadarshiny Dhar ◽  
Saibal Dutta ◽  
V. Mukherjee ◽  
Abhijit Dhar ◽  
Prithwiraj Das

Author(s):  
Pavan Kumar Yeditha ◽  
Tarun Pant ◽  
Maheswaran Rathinasamy ◽  
Ankit Agarwal

Abstract With the increasing stress on water resources for a developing country like India, it is pertinent to understand the dominant streamflow patterns for effective planning and management activities. This study investigates the spatiotemporal characterization of streamflow of six unregulated catchments in India. Firstly, Mann Kendall (MK) and Changepoint analysis were carried out to detect the presence of trends and any abrupt changes in hydroclimatic variables in the chosen streamflows. To unravel the relationships between the temporal variability of streamflow and its association with precipitation and global climate indices, namely, Niño 3.4, IOD, PDO, and NAO, continuous wavelet transform is used. Cross-wavelet transform and wavelet coherence analysis was also used to capture the coherent and phase relationships between streamflow and climate indices. The continuous wavelet transforms of streamflow data revealed that intra-annual (0.5 years), annual (1 year), and inter-annual (2–4 year) oscillations are statistically significant. Furthermore, a better understanding of the in-phase relationship between the streamflow and precipitation at intra-annual and annual time scales were well-captured using wavelet coherence analysis compared to cross wavelet transform. Furthermore, our analysis also revealed that streamflow observed an in-phase relationship with IOD and NAO, whereas a lag correlation with Niño 3.4 and PDO indices at intra-annual, annual and interannual time scales.


2021 ◽  
Vol 14 (2) ◽  
pp. 1116
Author(s):  
José Nildo da Nóbrega ◽  
Carlos Antonio Costa dos Santos ◽  
Francisco de Assis Salviano de Sousa ◽  
Bergson Guedes Bezerra ◽  
Geber Barbosa de Albuquerque Moura ◽  
...  

O objetivo é investigar as fases temporais das variabilidades de precipitação pluvial das Regiões Hidrográficas do Tocantins-Araguaia e São Francisco, como, também, correlacioná-las com índices de anomalias de Temperatura da Superfície do Mar (TSM) do Pacífico, na região do Niño 3.4, utilizando a análise de transformada ondaleta. A área geográfica está localizada entre os paralelos 0,5º S a 20º S e meridianos 34,8º W a 55,4º W. Foram utilizados dados mensais de precipitação observados e de reanálise (1º x 1º), no período de 1945-2016, e de TSM de 1950-2016 provenientes de órgãos governamentais nacionais e internacionais. As Ondaletas Contínuas mostraram que as variabilidades dominantes, de precipitação total anual, nas Regiões Hidrográficas do Tocantins-Araguaia e do São Francisco são nas escalas de três a cinco anos, de 11 a 12 anos e em torno de 22 anos. Para ambas as Regiões essas frequências estão em fases, pela Transformada Ondaleta Cruzada e confirmada pela Ondaleta Coerente. Nas análises de Ondaletas Cruzada e Coerente das precipitações com os índices oceânicos se verificou que houve avanço (135º) na série do Niño 3.4 em relação as das precipitações das Regiões nas escalas de três a cinco anos, mas foram verificadas diferenças de fase nas escalas decenais da precipitação das Regiões com os índices oceânicos. Concluiu-se que as variabilidades da precipitação de ambas as Regiões estão em fase e que os eventos ENOS influenciam nas precipitações das Regiões Hidrográficas do Tocantins-Araguaia e São Francisco.  Studies of Interannual and Interdecennial Variabiliteis of Rainfall in the Tocantins-Araguaia and São Francisco Hydrographic Regions in Brazil ABSTRACTThe objective is to investigate the temporal phases of the variability of rainfall in the Hydrographic Regions of Tocantins-Araguaia and São Francisco, as well as to correlate them with anomalies indexes of the Sea Surface Temperature (SST) of the Pacific, in the Niño 3.4 region, using wavelet transform analysis. The geographical area is located between the parallels 0.5º S to 20º S and meridians 34.8º W to 55.4º W. We used monthly data of observed and reanalysis precipitation (1º x 1º), in the period from 1945 to 2016, and from 1950 to 2016 for SST. The data are from national and international government agencies. The continuous wavelet showed that the dominant variability of total annual precipitation, in the Hydrographic Regions of Tocantins-Araguaia and São Francisco, are in the frequencies of three to five years, 11 to 12 years and about 22 years. These frequencies are in phases by the cross wavelet transform and confirmed by the coherent wavelet. In the cross and coherent wavelet analysis of the precipitation with the oceanic indices, there was an advance (135º) in the Niño 3.4 series in relation to the precipitation of the Regions in the frequency of three to five years, but phase differences were observed in the decadal frequencies between the precipitation of the Regions and oceanic indices. We concluded that the variability of precipitation in both regions is in phase and that the ENOS events influence the rainfall in the Hydrographic Regions of Tocantins-Araguaia and São Francisco.Keywords: El Niño, hydrographic catchment, wavelet, climate variability.


Sign in / Sign up

Export Citation Format

Share Document