scholarly journals Study of Solar Wind and Interplanetary Magnetic Field Features Associated with Geomagnetic Storms: The Cross Wavelet Approach

2021 ◽  
Author(s):  
Sujan Prasad Gautam ◽  
Ashok Silwal ◽  
Prakash Poudel ◽  
Monika Karki ◽  
Binod Adhikari ◽  
...  
2012 ◽  
Vol 2 (10) ◽  
pp. 1-3 ◽  
Author(s):  
Praveen Kumar Gupta ◽  
◽  
Puspraj Singh Puspraj Singh ◽  
Puspraj Singh Puspraj Singh ◽  
P. K. Chamadia P. K. Chamadia

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Chandrasekhar Bhoj ◽  
Lalan Prasad

The aim of this paper is to investigate the association of the geomagnetic storms with the IMF for solar cycle 24. Result of the present analysis shows that IMF is geoeffective parameter but its impact varies in accordance with different time periods. The correlation coefficient between Dst and IMF found to be -0.6 for solar cycle 24.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Chandrasekhar Bhoj ◽  
Lalan Prasad

The aim of this paper is to investigate the association of the geomagnetic storms with the IMF for solar cycle 24. Result of the present analysis shows that IMF is geoeffective parameter but its impact varies in accordance with different time periods. The correlation coefficient between Dst and IMF found to be -0.6 for solar cycle 24


2001 ◽  
Vol 19 (6) ◽  
pp. 649-653 ◽  
Author(s):  
S. Eriksson ◽  
L. G. Blomberg ◽  
N. Ivchenko ◽  
T. Karlsson ◽  
G. T. Marklund

Abstract. The cross-polar potential drop Φpc and the low-latitude asymmetric geomagnetic disturbance field, as indicated by the mid-latitude ASY-H magnetic index, are used to study the average magnetospheric response to the solar wind forcing for southward interplanetary magnetic field conditions. The state of the solar wind is monitored by the ACE spacecraft and the ionospheric convection is measured by the double probe electric field instrument on the Astrid-2 satellite. The solar wind-magnetosphere coupling is examined for 77 cases in February and from mid-May to mid-June 1999 by using the interplanetary magnetic field Bz component and the reconnection electric field. Our results show that the maximum correlation between Φpc  and the reconnection electric field is obtained approximately 25 min after the solar wind has reached a distance of 11 RE from the Earth, which is the assumed average position of the magnetopause. The corresponding correlation for ASY-H shows two separate responses to the reconnection electric field, delayed by about 35 and 65 min, respectively. We suggest that the combination of the occurrence of a large magnetic storm on 18 February 1999 and the enhanced level of geomagnetic activity which peaks at Kp = 7- may explain the fast direct response of ASY-H to the solar wind at 35 min, as well as the lack of any clear secondary responses of Φpc  to the driving solar wind at time delays longer than 25 min.Key words. Magnetospheric physics (solar wind-magnetosphere interactions; plasma convection) – Ionosphere (electric fields and currents)


2005 ◽  
Vol 23 (4) ◽  
pp. 1405-1431 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
S. E. Milan

Abstract. Dayside UV emissions in Saturn's polar ionosphere have been suggested to be the first observational evidence of the kronian "cusp" (Gérard et al., 2004). The emission has two distinct states. The first is a bright arc-like feature located in the pre-noon sector, and the second is a more diffuse "spot" of aurora which lies poleward of the general location of the main auroral oval, which may be related to different upstream interplanetary magnetic field (IMF) orientations. Here we take up the suggestion that these emissions correspond to the cusp. However, direct precipitation of electrons in the cusp regions is not capable of producing significant UV aurora. We have therefore investigated the possibility that the observed UV emissions are associated with reconnection occurring at the dayside magnetopause, possibly pulsed, akin to flux transfer events seen at the Earth. We devise a conceptual model of pulsed reconnection at the low-latitude dayside magnetopause for the case of northwards IMF which will give rise to pulsed twin-vortical flows in the magnetosphere and ionosphere in the vicinity of the open-closed field-line boundary, and hence to bi-polar field-aligned currents centred in the vortical flows. During intervals of high-latitude lobe reconnection for southward IMF, we also expect to have pulsed twin-vortical flows and corresponding bi-polar field-aligned currents. The vortical flows in this case, however, are displaced poleward of the open-closed field line boundary, and are reversed in sense, such that the field-aligned currents are also reversed. For both cases of northward and southward IMF we have also for the first time included the effects associated with the IMF By effect. We also include the modulation introduced by the structured nature of the solar wind and IMF at Saturn's orbit by developing "slow" and "fast" flow models corresponding to intermediate and high strength IMF respectively. We then consider the conditions under which the plasma populations appropriate to either sub-solar reconnection or high-latitude lobe reconnection can carry the currents indicated. We have estimated the field-aligned voltages required, the resulting precipitating particle energy fluxes, and the consequent auroral output. Overall our model of pulsed reconnection under conditions of northwards and southwards IMF, and for varying orientations of IMF By, is found to produce a range of UV emission intensities and geometries which is in good agreement with the data presented by Gérard et al. (2004). The recent HST-Cassini solar wind campaign provides a unique opportunity to test the theoretical ideas presented here.


Sign in / Sign up

Export Citation Format

Share Document