The image of the coefficient space in the universal deformation space of a flat Galois representation of a p-adic field

2011 ◽  
Vol 139 (3-4) ◽  
pp. 273-290
Author(s):  
Eugen Hellmann
1999 ◽  
Vol 1999 (509) ◽  
pp. 199-236 ◽  
Author(s):  
Gebhard Böckle

Abstract Given an absolutely irreducible Galois representation : GE → GLN (k), E a number field, k a finite field of characteristic l > 2, and a finite set of places Q of E containing all places above l and ∞ and all where ∞ ramifies, there have been defined many functors representing strict equivalence classes of deformations of such a representation, e.g. by Mazur or Wiles in [15] or [26], with various conditions on the behaviour of the deformations at the places in Q and with the condition that the deformations are unramified outside Q. Those functors are known to be representable. For as above, our goal is to present a rather general class of global deformation functors that satisfy local deformation conditions and to investigate for those, under what conditions the global deformation functor is determined by the local deformation functors. We will give precise conditions under which the local functors for all places in Q are sufficient to describe the global functor, first in a coarse form, then in a refined form using auxiliary primes as done by Taylor and Wiles in [24]. This has several consequences. The strongest is that one can derive ring theoretic results for the universal deformation space by Mazur if one uses results of Diamond and Wiles, cf. [11] and [26], and if one has a good understanding of all local situations. Furthermore it is easier to understand what happens under increasing the ramification as done by Boston and Ramakrishna in [6] and [20], [21]. Finally we shall reinterpret the results in the case of a tame representation by directly considering presentations of certain pro-l Galois groups and revisiting the prime-to-adjoint principle of Boston, cf. [5].


Author(s):  
Ashwin Iyengar

Abstract We study the rigid generic fiber $\mathcal{X}^\square _{\overline \rho }$ of the framed deformation space of the trivial representation $\overline \rho : G_K \to \textrm{GL}_n(k)$ where $k$ is a finite field of characteristic $p>0$ and $G_K$ is the absolute Galois group of a finite extension $K/\textbf{Q}_p$. Under some mild conditions on $K$ we prove that $\mathcal{X}^\square _{\overline \rho }$ is normal. When $p> n$ we describe its irreducible components and show Zariski density of its crystalline points.


2021 ◽  
Vol 9 ◽  
Author(s):  
Patrick Graf ◽  
Martin Schwald

Abstract Let X be a normal compact Kähler space with klt singularities and torsion canonical bundle. We show that X admits arbitrarily small deformations that are projective varieties if its locally trivial deformation space is smooth. We then prove that this unobstructedness assumption holds in at least three cases: if X has toroidal singularities, if X has finite quotient singularities and if the cohomology group ${\mathrm {H}^{2} \!\left ( X, {\mathscr {T}_{X}} \right )}$ vanishes.


2016 ◽  
Vol 152 (7) ◽  
pp. 1398-1420 ◽  
Author(s):  
Dan Petersen

We prove that the tautological ring of ${\mathcal{M}}_{2,n}^{\mathsf{ct}}$, the moduli space of $n$-pointed genus two curves of compact type, does not have Poincaré duality for any $n\geqslant 8$. This result is obtained via a more general study of the cohomology groups of ${\mathcal{M}}_{2,n}^{\mathsf{ct}}$. We explain how the cohomology can be decomposed into pieces corresponding to different local systems and how the tautological cohomology can be identified within this decomposition. Our results allow the computation of $H^{k}({\mathcal{M}}_{2,n}^{\mathsf{ct}})$ for any $k$ and $n$ considered both as $\mathbb{S}_{n}$-representation and as mixed Hodge structure/$\ell$-adic Galois representation considered up to semi-simplification. A consequence of our results is also that all even cohomology of $\overline{{\mathcal{M}}}_{2,n}$ is tautological for $n<20$, and that the tautological ring of $\overline{{\mathcal{M}}}_{2,n}$ fails to have Poincaré duality for all $n\geqslant 20$. This improves and simplifies results of the author and Orsola Tommasi.


2017 ◽  
Vol 69 (1) ◽  
pp. 107-129
Author(s):  
Masoud Kamgarpour

AbstractUnder the local Langlands correspondence, the conductor of an irreducible representation of Gln(F) is greater than the Swan conductor of the corresponding Galois representation. In this paper, we establish the geometric analogue of this statement by showing that the conductor of a categorical representation of the loop group is greater than the irregularity of the corresponding meromorphic connection.


2017 ◽  
Vol 11 (1) ◽  
pp. 409-423
Author(s):  
Eriko Hironaka ◽  
◽  
Sarah Koch ◽  

Sign in / Sign up

Export Citation Format

Share Document