Deformation Theory of the Trivial mod p Galois Representation for GLn
Keyword(s):
Abstract We study the rigid generic fiber $\mathcal{X}^\square _{\overline \rho }$ of the framed deformation space of the trivial representation $\overline \rho : G_K \to \textrm{GL}_n(k)$ where $k$ is a finite field of characteristic $p>0$ and $G_K$ is the absolute Galois group of a finite extension $K/\textbf{Q}_p$. Under some mild conditions on $K$ we prove that $\mathcal{X}^\square _{\overline \rho }$ is normal. When $p> n$ we describe its irreducible components and show Zariski density of its crystalline points.
2016 ◽
Vol 152
(8)
◽
pp. 1609-1647
◽
2017 ◽
Vol 13
(05)
◽
pp. 1191-1211
Keyword(s):
Keyword(s):
2018 ◽
Vol 2018
(736)
◽
pp. 69-93
◽
2020 ◽
Vol 24
(1)
◽
pp. 79-102
Keyword(s):
2000 ◽
Vol 43
(3)
◽
pp. 282-293
◽
2016 ◽
Vol 17
(5)
◽
pp. 1019-1064
◽
1999 ◽
Vol 1999
(509)
◽
pp. 199-236
◽