An experimental study of influence of hot water consumption rate on the thermal stratification inside a horizontal mantle storage tank

2012 ◽  
Vol 48 (7) ◽  
pp. 1103-1112 ◽  
Author(s):  
Mohsen Jannatabadi ◽  
Hessam Taherian
Author(s):  
Ali A. Dehghan ◽  
Mohammad H. Hosni ◽  
S. Hoda Shiryazdi

The thermal performance of a Thermosyphon Domestic Solar Water Heater (DSWH) with a vertical storage tank is investigated experimentally. The system is installed on a roof - top of a four person family house and its thermal characteristics is evaluated by means of carefully measuring the temperature distribution of water inside the storage tank, solar collector flow rate and its inlet and outlet temperatures as well as load/consumption outlet and inlet temperatures and the corresponding water flow rate under a realistic operating conditions. The measurements are conducted every hour starting from morning until late night on a daily basis and continued for about 120 days during August until November 2004. It is seen that thermal stratification is well established inside the tank from 11 AM until 10 PM especially during August to September enabling the tank to provide the necessary amount of hot water at an acceptable temperature. However, thermal stratification is observed to start degrading from mid-night until morning when there is no hot water supply from the collector and due to the diffusion of heat from the top hot water layers to the bottom cold region and conduction through tank’s wall. The thermal behavior of the storage tank is also assessed based on both energy and exergy analysis and its first and second law efficiencies are calculated. It is observed that the storage tank under study has an average first law efficiency of 47.8% and is able to supply the required amount of hot water at a proper temperature. The average second law efficiency of the storage tank is observed to be 28.7% and, although is less than its first low efficiency, but is high enough to ensure that the quality of the hot water supply is well preserved. The proper level of second law efficiency is due to the preservation of the thermal stratification inside the storage tank, leading to supply of hot water at highest possible temperature and hence highest possible energy potential. Experiments are also done for no-load conditions when the storage tank only interacts with the collector, without hot water withdrawal from the tank. It is seen that for no-load condition, thermal stratification continuously develops from morning until around 16 PM after which no noticeable changes in the temperature distribution inside the tank is observed.


2012 ◽  
Vol 97 ◽  
pp. 897-906 ◽  
Author(s):  
M.C. Rodríguez-Hidalgo ◽  
P.A. Rodríguez-Aumente ◽  
A. Lecuona ◽  
M. Legrand ◽  
R. Ventas

2019 ◽  
Vol 162 ◽  
pp. 114151 ◽  
Author(s):  
Zilong Wang ◽  
Hua Zhang ◽  
Binlin Dou ◽  
Guanhua Zhang ◽  
Weidong Wu

2020 ◽  
Vol 44 (3) ◽  
pp. 74-79
Author(s):  
Robert Smusz ◽  
Joanna Wilk ◽  
Paweł Bałon

AbstractThis article presents the results of the numerical investigation of the thermal stratification in the hot water storage tank. The exchanger consists of three tube coils that are immersed in the storage tank of hot water. Two coils—lower and upper—are designed to warm the water in the tank using the water as a heating medium. Another coil—uses the refrigerant for the waste heat transfer. The temperature stratification device is mounted in the thermal storage tank. The device’s task is to improve the thermal stratification level of heated water. The performed numerical simulations allowed us to obtain the temperature and velocity fields in the storage tank under the conditions of the work of coils filled with water. Calculations were made in the case of the use of the stratification device under the operating conditions of the upper and lower coils with water.


Sign in / Sign up

Export Citation Format

Share Document