scholarly journals Maturational Changes in Rabbit Renal Basolateral Membrane Vesicle Osmotic Water Permeability

2000 ◽  
Vol 174 (1) ◽  
pp. 53-58 ◽  
Author(s):  
R. Quigley ◽  
N. Gupta ◽  
A. Lisec ◽  
M. Baum
1995 ◽  
Vol 268 (1) ◽  
pp. F53-F63 ◽  
Author(s):  
B. Flamion ◽  
K. R. Spring ◽  
M. Abramow

Prolonged fluid restriction in rats is accompanied by functional modifications of the terminal part of the inner medullary collecting duct (IMCD) revealed by a sustained increase in arginine vasopressin (AVP)-independent transepithelial osmotic water permeability (PTE) in vitro. The cellular basis of this adaptation was explored in isolated and perfused terminal IMCDs of Sprague-Dawley rats using video and fluorescence microscopy. Basolateral membrane osmotic water permeability (Posm), transcellular Posm, and PTE were measured in quick sequence in every tubule. They were expressed per unit area of basolateral membrane corrected for infoldings, based on previous stereological studies and assuming no major change in membrane surface area between hydrated and dehydrated animals. Compared with IMCDs of rats with a high water intake, IMCDs of rats deprived of fluid for 36 h displayed a significantly higher basal PTE (24.9 +/- 5.1 vs. 6.1 +/- 0.6 microns/s), a similar basolateral Posm, and a higher transcellular Posm, implying a higher permeability of the apical membrane, despite the absence of exogenous AVP. However, when IMCDs of thirsted rats were exposed to AVP in vitro, their transcellular Posm (36.0 +/- 2.4 microns/s) was significantly smaller than their PTE determined simultaneously (51.8 +/- 7.1 microns/s), suggesting that part of the water flow may follow a paracellular route. A change in paracellular pathways was supported by higher apparent permeabilities to [14C]sucrose (0.85 +/- 0.27 vs. 0.28 +/- 0.04 x 10(-5) cm/s) and to [methoxy-3H]inulin (0.25 +/- 0.04 vs. 0.14 +/- 0.03 x 10(-5) cm/s) in IMCDs of thirsted rats. The nonelectrolyte permeabilities were affected neither by AVP nor by urea-rich bathing solutions. We conclude that in vivo factors related to dehydration produce a conditioning effect on terminal IMCD, which includes stabilization of the apical membrane in a state of high Posm and opening up of paracellular pathways revealed by a higher permeability to water and nonelectrolytes. The role of these adaptive phenomena remains unclear but may pertain to the sudden transitions between antidiuresis and diuresis.


2000 ◽  
Vol 279 (2) ◽  
pp. G463-G470 ◽  
Author(s):  
Kasper S. Wang ◽  
Tonghui Ma ◽  
Ferda Filiz ◽  
A. S. Verkman ◽  
J. Augusto Bastidas

Transgenic null mice were used to test the hypothesis that water channel aquaporin-4 (AQP4) is involved in colon water transport and fecal dehydration. AQP4 was immunolocalized to the basolateral membrane of colonic surface epithelium of wild-type (+/+) mice and was absent in AQP4 null (−/−) mice. The transepithelial osmotic water permeability coefficient ( P f) of in vivo perfused colon of +/+ mice, measured using the volume marker 14C-labeled polyethylene glycol, was 0.016 ± 0.002 cm/s. P f of proximal colon was greater than that of distal colon (0.020 ± 0.004 vs. 0.009 ± 0.003 cm/s, P < 0.01). P f was significantly lower in −/− mice when measured in full-length colon (0.009 ± 0.002 cm/s, P< 0.05) and proximal colon (0.013 ± 0.002 cm/s, P< 0.05) but not in distal colon. There was no difference in water content of cecal stool from +/+ vs. −/− mice (0.80 ± 0.01 vs. 0.81 ± 0.01), but there was a slightly higher water content in defecated stool from −/− mice (0.68 ± 0.01 vs. 0.65 ± 0.01, P < 0.05). Despite the differences in water permeability with AQP4 deletion, theophylline-induced secretion was not impaired (50 ± 9 vs. 51 ± 8 μl · min−1 · g−1). These results provide evidence that transcellular water transport through AQP4 water channels in colonic epithelium facilitates transepithelial osmotic water permeability but has little or no effect on colonic fluid secretion or fecal dehydration.


1981 ◽  
Vol 77 (5) ◽  
pp. 549-570 ◽  
Author(s):  
T C Terwilliger ◽  
A K Solomon

The osmotic water permeability of human red cells has been reexamined with a stopped-flow device and a new perturbation technique. Small osmotic gradients are used to minimize the systematic error caused by nonlinearities in the relationship between cell volume and light scattering. Corrections are then made for residual systematic error. Our results show that the hydraulic conductivity, Lp, is essentially independent of the direction of water flow and of osmolality in the range 184-365 mosM. the mean value of Lp obtained obtained was 1.8 +/- 0.1 (SEM) X 10-11 cm3 dyne -1 s-1.


1982 ◽  
Vol 242 (4) ◽  
pp. F321-F330 ◽  
Author(s):  
E. Gonzalez ◽  
P. Carpi-Medina ◽  
G. Whittembury

Proximal straight tubules were dissected and mounted in a chamber with their lumina occluded. The well-stirred bath could be 95% changed within 84 ms to set up osmotic gradients (delta Coi) across the peritubular cell aspect. Volume changes (less than or equal to 10 pl/mm) were estimated from continuous records of diameter changes (error less than 0.1 micrometers). delta Coi greater than or equal to 2-3 mosM could be discerned. delta Coi values from 10 to 44 mosM were used to evaluate Posc, the cell osmotic water permeability coefficient, and extrapolated to delta Coi = 0. Posc = 25.1 (+/- 2.3) X 10(-4) cm3.s-1.osM-1.cm2 tubular surface area-1. These values are lower than those reported for Pose, the transepithelial osmotic water permeability coefficient, and become lower if corrected for the real (infolded) peritubular cell surface area. Thus, for a given osmotic difference, transcellular water flow finds a higher resistance than paracellular water flow. Experiments were also performed with delta Coi greater than 100 mosM, but interpretation of these data is difficult because of the presence of volume regulatory phenomena and other undesirable effects.


2019 ◽  
Vol 316 (2) ◽  
pp. F253-F262 ◽  
Author(s):  
Josephine K. Liwang ◽  
Joseph A. Ruiz ◽  
Lauren M. LaRocque ◽  
Fitra Rianto ◽  
Fuying Ma ◽  
...  

Hypertonicity increases water permeability, independently of vasopressin, in the inner medullary collecting duct (IMCD) by increasing aquaporin-2 (AQP2) membrane accumulation. We investigated whether protein kinase C (PKC) and adenosine monophosphate kinase (AMPK) are involved in hypertonicity-regulated water permeability. Increasing perfusate osmolality from 150 to 290 mosmol/kgH2O and bath osmolality from 290 to 430 mosmol/kgH2O significantly stimulated osmotic water permeability. The PKC inhibitors chelerythrine (10 µM) and rottlerin (50 µM) significantly reversed the increase in osmotic water permeability stimulated by hypertonicity in perfused rat terminal IMCDs. Chelerythrine significantly increased phosphorylation of AQP2 at S261 but not at S256. Previous studies show that AMPK is stimulated by osmotic stress. We tested AMPK phosphorylation under hypertonic conditions. Hypertonicity significantly increased AMPK phosphorylation in inner medullary tissues. Blockade of AMPK with Compound C decreased hypertonicity-stimulated water permeability but did not alter phosphorylation of AQP2 at S256 and S261. AICAR, an AMPK stimulator, caused a transient increase in osmotic water permeability and increased phosphorylation of AQP2 at S256. When inner medullary tissue was treated with the PKC activator phorbol dibutyrate (PDBu), the AMPK activator metformin, or both, AQP2 phosphorylation at S261 was decreased with PDBu or metformin alone, but there was no additive effect on phosphorylation with PDBu and metformin together. In conclusion, hypertonicity regulates water reabsorption by activating PKC. Hypertonicity-stimulated water reabsorption by PKC may be related to the decrease in endocytosis of AQP2. AMPK activation promotes water reabsorption, but the mechanism remains to be determined. PKC and AMPK do not appear to act synergistically to regulate water reabsorption.


Sign in / Sign up

Export Citation Format

Share Document