Evolution of the N-Terminal Regulation of Cardiac Troponin I for Heart Function of Tetrapods: Lungfish Presents an Example of the Emergence of Novel Submolecular Structure to Lead the Capacity of Adaptation

Author(s):  
Monica Rasmussen ◽  
Han-Zhong Feng ◽  
J.-P. Jin
Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Rachel R Smith ◽  
Michelle K Leppo ◽  
Isotta Chimenti ◽  
John Terrovitis ◽  
Andreas S Barth ◽  
...  

Cardiosphere-derived cells (CDCs) were grown from rat hearts and percutaneous endomyocardial adult human biopsy specimens. Rat CDCs plated as single cells formed clones with a doubling time of 42.2 ± 0.7 hours (n = 9). Clones from rat CDCs divided steadily for 27 days before proliferation spontaneously slowed and morphological changes occurred in most cells. After 56 days, rat clonal populations contained a small fraction of c-Kit + cells as determined by flow cytometry, and large subsets of cells expressing cardiac troponin I, α-smooth muscle actin, and von Willebrand factor as determined by immunofluorescence, indicative of their multipotentiality in vitro . To assess therapeutic potential, acute myocardial infarcts (MIs) were created in immunodeficient mice and actively proliferating polyclonal human CDCs were injected into the border zone. Echocardiographic left ventricular function, histological examination, and immunofluorescence served as endpoints. CDC-injected animals showed no significant deterioration in ejection fraction (EF) from 2 days (EF = 45.2 ± 4.8%) to 6 weeks post-MI (EF = 40.2 ± 4.5%, n = 7, p = NS), in contrast to fibroblast-injected control animals (EF = 42.8 ± 4.3% at 2 days vs 27.3 ± 4.0% at 6 weeks, p < 0.01). At the 6 week endpoint, the CDC group had thicker infarct walls as measured histologically compared to the fibroblast group (0.26 ± 0.03mm vs 0.12 ± 0.01mm, n = 5, p < 0.01). CDC engraftment was determined by immunofluorescence using a human-specific antibody. CDCs stably engrafted for up to 6 weeks and could be found distributed primarily throughout the infarct (57 ± 3% of engrafted CDCs, n = 5 animals), as well as the border zone (30 ± 5%) and viable tissue (13 ± 3%). After 6 weeks, CDCs within the infarct had formed small myocytes with little cytoplasmic cardiac troponin I, while CDCs within the viable myocardium had formed large myocytes with well-defined sarcomeric organization. We conclude that CDCs are clonogenic and spontaneously multipotent in vitro and capable of preserving heart function in a mouse infarct model. Functional preservation is presumably due in part to maintenance of infarct wall thickness, likely secondary to stable CDC engraftment within the infarct, as well as the formation of morphologically mature myocytes throughout the non-infarcted tissue.


2007 ◽  
Vol 2007 ◽  
pp. 1-5 ◽  
Author(s):  
Nicoletta Iacovidou ◽  
Maria Boutsikou ◽  
Demetrios Gourgiotis ◽  
Despina D. Briana ◽  
Stavroula Baka ◽  
...  

Intrauterine growth restriction (IUGR) implies fetal hypoxia, resulting in blood flow redistribution and sparing of vital organs (brain, heart). Serum cardiac Troponin-I (cTnI), a well-established marker of myocardial ischaemia, was measured in 40 mothers prior to delivery, the doubly clamped umbilical cords (representing fetal state), and their 20 IUGR and 20 appropriate-for-gestational-age (AGA) neonates on day 1 and 4 postpartum. At all time points, no differences in cTnI levels were observed between the AGA and IUGR groups. Strong positive correlations were documented between maternal and fetal/neonatal values (r≥.498,P≤.025in all cases in the AGA andr≥.615,P≤.009in all cases in the IUGR group). These results may indicate (a) normal heart function, due to heart sparing, in the IUGR group (b) potential crossing of the placental barrier by cTnI in both groups


2009 ◽  
Vol 36 (2) ◽  
pp. 286-292 ◽  
Author(s):  
Rajamiyer V. Venkateswaran ◽  
Jegatheesan Saravana Ganesh ◽  
Joyce Thekkudan ◽  
Richard Steeds ◽  
Ian C. Wilson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document