scholarly journals Weak Convergence Rates for Spatial Spectral Galerkin Approximations of Semilinear Stochastic Wave Equations with Multiplicative Noise

Author(s):  
Ladislas Jacobe de Naurois ◽  
Arnulf Jentzen ◽  
Timo Welti

AbstractStochastic wave equations appear in several models for evolutionary processes subject to random forces, such as the motion of a strand of DNA in a liquid or heat flow around a ring. Semilinear stochastic wave equations can typically not be solved explicitly, but the literature contains a number of results which show that numerical approximation processes converge with suitable rates of convergence to solutions of such equations. In the case of approximation results for strong convergence rates, semilinear stochastic wave equations with both additive or multiplicative noise have been considered in the literature. In contrast, the existing approximation results for weak convergence rates assume that the diffusion coefficient of the considered semilinear stochastic wave equation is constant, that is, it is assumed that the considered wave equation is driven by additive noise, and no approximation results for multiplicative noise are known. The purpose of this work is to close this gap and to establish essentially sharp weak convergence rates for spatial spectral Galerkin approximations of semilinear stochastic wave equations with multiplicative noise. In particular, our weak convergence result establishes as a special case essentially sharp weak convergence rates for the continuous version of the hyperbolic Anderson model. Our method of proof makes use of the Kolmogorov equation and the Hölder-inequality for Schatten norms.

2016 ◽  
Vol 54 (2) ◽  
pp. 1093-1119 ◽  
Author(s):  
Rikard Anton ◽  
David Cohen ◽  
Stig Larsson ◽  
Xiaojie Wang

2018 ◽  
Vol 39 (3) ◽  
pp. 1206-1245 ◽  
Author(s):  
David Hipp ◽  
Marlis Hochbruck ◽  
Christian Stohrer

Abstract This paper provides a unified error analysis for nonconforming space discretizations of linear wave equations in the time domain. We propose a framework that studies wave equations as first-order evolution equations in Hilbert spaces and their space discretizations as differential equations in finite-dimensional Hilbert spaces. A lift operator maps the semidiscrete solution from the approximation space to the continuous space. Our main results are a priori error bounds in terms of interpolation, data and conformity errors of the method. Such error bounds are the key to the systematic derivation of convergence rates for a large class of problems. To show that this approach significantly eases the proof of new convergence rates, we apply it to an isoparametric finite element discretization of the wave equation with acoustic boundary conditions in a smooth domain. Moreover, our results reproduce known convergence rates for already investigated conforming and nonconforming space discretizations in a concise and unified way. The examples discussed in this paper comprise discontinuous Galerkin discretizations of Maxwell’s equations and finite elements with mass lumping for the acoustic wave equation.


2008 ◽  
Vol 19 (04) ◽  
pp. 421-437 ◽  
Author(s):  
XIAOMING FAN

In this paper, we investigate the existence of compact random attractors and their fractal dimension for the random dynamical systems determined by damped stochastic wave equations of Sine–Gordon type with linear multiplicative noise.


2020 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
Vina Apriliani ◽  
Ikhsan Maulidi ◽  
Budi Azhari

One of the phenomenon in marine science that is often encountered is the phenomenon of water waves. Waves that occur below the surface of seawater are called internal waves. One of the mathematical models that can represent solitary internal waves is the modified Korteweg-de Vries (mKdV) equation. Many methods can be used to construct the solution of the mKdV wave equation, one of which is the extended F-expansion method. The purpose of this study is to determine the solution of the mKdV wave equation using the extended F-expansion method. The result of solving the mKdV wave equation is the exact solutions. The exact solutions of the mKdV wave equation are expressed in the Jacobi elliptic functions, trigonometric functions, and hyperbolic functions. From this research, it is expected to be able to add insight and knowledge about the implementation of the innovative methods for solving wave equations. 


Sign in / Sign up

Export Citation Format

Share Document