Different Marine Heterotrophic Nanoflagellates Affect Differentially the Composition of Enriched Bacterial Communities

2005 ◽  
Vol 49 (3) ◽  
pp. 474-485 ◽  
Author(s):  
E. Vázquez-Domínguez ◽  
E.O. Casamayor ◽  
P. Català ◽  
P. Lebaron
2020 ◽  
Vol 96 (2) ◽  
Author(s):  
A S Pradeep Ram ◽  
J Keshri ◽  
T Sime-Ngando

ABSTRACT Limited data exist on the simultaneous impact of bottom-up (nutrients) and top-down (viruses and heterotrophic nanoflagellates) forces in shaping freshwater bacterial communities. In our laboratory microcosms, nutrient additions (organic and inorganic) and viral reduction approach led to the proliferation of high nucleic acid (HNA) bacterial subpopulation without an increase in phage abundance. High viral-mediated bacterial lysis in the presence of nanoflagellates yielded high proportion of low nucleic acid bacterial subpopulation. 16S rRNA gene sequence analysis indicated that members of classes Proteobacteria and Bacteroidetes evoked differential responses to nutrients and mortality forces, thereby resulting in differences (P < 0.001) in bacterial community composition and diversity, as observed from analysis of similarities and UniFrac analysis. Bacterial species richness (Chao) and diversity (Shannon) index was significantly higher (P < 0.001) in the presence of both the top-down factors and viruses alone, whereas lower host diversity was observed under nutrient relaxation of growth-limiting substrates due to the explosive growth of opportunistic HNA bacterial subpopulation. Our results are in agreement with the theoretical model of ‘killing the winner’, where the availability of growth-limiting substrates can act as a stimulating factor for host community composition while top-down forces can operate in the control of host diversity.


2020 ◽  
Vol 85 ◽  
pp. 131-139
Author(s):  
S Shen ◽  
Y Shimizu

Despite the importance of bacterial cell volume in microbial ecology in aquatic environments, literature regarding the effects of seasonal and spatial variations on bacterial cell volume remains scarce. We used transmission electron microscopy to examine seasonal and spatial variations in bacterial cell size for 18 mo in 2 layers (epilimnion 0.5 m and hypolimnion 60 m) of Lake Biwa, Japan, a large and deep freshwater lake. During the stratified period, we found that the bacterial cell volume in the hypolimnion ranged from 0.017 to 0.12 µm3 (median), whereas that in the epilimnion was less variable (0.016 to 0.033 µm3, median) and much lower than that in the hypolimnion. Additionally, in the hypolimnion, cell volume during the stratified period was greater than that during the mixing period (up to 5.7-fold). These differences in cell volume resulted in comparable bacterial biomass in the hypolimnion and epilimnion, despite the fact that there was lower bacterial abundance in the hypolimnion than in the epilimnion. We also found that the biomass of larger bacteria, which are not likely to be grazed by heterotrophic nanoflagellates, increased in the hypolimnion during the stratified period. Our data suggest that estimation of carbon flux (e.g. bacterial productivity) needs to be interpreted cautiously when cell volume is used as a constant parametric value. In deep freshwater lakes, a difference in cell volume with seasonal and spatial variation may largely affect estimations.


Sign in / Sign up

Export Citation Format

Share Document