Mechanosensitive potassium channels in locust muscle membrane

1999 ◽  
Vol 28 (4) ◽  
pp. 346-350 ◽  
Author(s):  
I. R. Mellor ◽  
B. A. Miller ◽  
A. G. Petrov ◽  
I. Tabarean ◽  
P. N. R. Usherwood
2021 ◽  
Vol 22 (11) ◽  
pp. 5413
Author(s):  
Anastasia A. Shvetsova ◽  
Dina K. Gaynullina ◽  
Olga S. Tarasova ◽  
Rudolf Schubert

Maturation of the cardiovascular system is associated with crucial structural and functional remodeling. Thickening of the arterial wall, maturation of the sympathetic innervation, and switching of the mechanisms of arterial contraction from calcium-independent to calcium-dependent occur during postnatal development. All these processes promote an almost doubling of blood pressure from the moment of birth to reaching adulthood. This review focuses on the developmental alterations of potassium channels functioning as key smooth muscle membrane potential determinants and, consequently, vascular tone regulators. We present evidence that the pattern of potassium channel contribution to vascular control changes from Kir2, Kv1, Kv7 and TASK-1 channels to BKCa channels with maturation. The differences in the contribution of potassium channels to vasomotor tone at different stages of postnatal life should be considered in treatment strategies of cardiovascular diseases associated with potassium channel malfunction.


1997 ◽  
Vol 77 (4) ◽  
pp. 1165-1232 ◽  
Author(s):  
J. M. Quayle ◽  
M. T. Nelson ◽  
N. B. Standen

The properties and roles of ATP-sensitive (KATP) and inwardly rectifying (KIR) potassium channels are reviewed. Potassium channels regulate the membrane potential of smooth muscle, which controls calcium entry through voltage-dependent calcium channels, and thereby contractility through changes in intracellular calcium. The KATP channel is likely to be composed of members of the inward rectifier channel gene family (Kir6) and sulfonylurea receptor proteins. The KIR channels do not appear to be as widely distributed as KATP channels in smooth muscle and may provide a mechanism by which changes in extracellular K+ can alter smooth muscle membrane potential, and thereby arterial diameter. The KATP channels contribute to the resting membrane conductance of some types of smooth muscle and can open under situations of metabolic compromise. The KATP channels are targets of a wide variety of vasodilators and constrictors, which act, respectively, through adenosine 3',5'-cyclic monophosphate/protein kinase A and protein kinase C. The KATP channels are also activated by a number of synthetic vasodilators (e.g., diazoxide and pinacidil) and are inhibited by the oral hypoglycemic sulfonylurea drugs (e.g., glibenclamide). Together, KATP and KIR channels are important regulators of smooth muscle function and represent important therapeutic targets.


Nature ◽  
1985 ◽  
Vol 316 (6030) ◽  
pp. 736-738 ◽  
Author(s):  
A. E. Spruce ◽  
N. B. Standen ◽  
P. R. Stanfield

Author(s):  
F.T. Llados ◽  
V. Krlho ◽  
G.D. Pappas

It Is known that Ca++ enters the muscle fiber at the junctional area during the action of the neurotransmitter, acetylcholine (ACh). Pappas and Rose demonstrated that following Intense stimulation, calcium deposits are found In the postsynaptic muscle membrane, Indicating the existence of calcium uptake In the postsynaptic area following ACh release. In addition to this calcium uptake, when mammal Ian skeletal muscles are exposed to a sustained action of the neurotransmitter, muscle damage develops. These same effects, l.e., Increased transmitter release, calcium uptake and finally muscle damage, can be obtained by Incubating the muscle with lonophore A23178.


Sign in / Sign up

Export Citation Format

Share Document