MHC diversity in Caucasians, investigated using highly heterogeneous noncoding sequence motifs at the DQB1 locus including a retroviral long terminal repeat element, and its comparison to nonhuman primate homologues

2000 ◽  
Vol 51 (11) ◽  
pp. 898-904 ◽  
Author(s):  
Horst Donner ◽  
Ralf R. Tönjes ◽  
Ronald E. Bontrop ◽  
Reinhard Kurth ◽  
Klaus-Henning Usadel ◽  
...  

1990 ◽  
Vol 1 (1) ◽  
pp. 79-93 ◽  
Author(s):  
Eric M. Hallerman ◽  
John F. Schneider ◽  
Mark Gross ◽  
Zhanjiang Liu ◽  
Sung Joo Yoon ◽  
...  




2002 ◽  
Vol 130 (4) ◽  
pp. 1697-1705 ◽  
Author(s):  
Ning Jiang ◽  
I. King Jordan ◽  
Susan R. Wessler


2001 ◽  
Vol 75 (15) ◽  
pp. 6817-6824 ◽  
Author(s):  
Rebecca A. Russell ◽  
Yan Zeng ◽  
Otto Erlwein ◽  
Bryan R. Cullen ◽  
Myra O. McClure

ABSTRACT It has been suggested that sequences located within the 5′ noncoding region of human foamy virus (HFV) are critical for expression of the viral Gag and Pol structural proteins. Here, we identify a discrete ∼151-nucleotide sequence, located within the R region of the HFV long terminal repeat, that activates HFV Gag and Pol expression when present in the 5′ noncoding region but that is inactive when inverted or when placed in the 3′ noncoding region. Sequences that are critical for the expression of both Gag and Pol include not only the 5′ splice site positioned at +51 in the R region, which is used to generate the spliced pol mRNA, but also intronic R sequences located well 3′ to this splice site. Analysis of total cellular gag andpol mRNA expression demonstrates that deletion of the R region has little effect on gag mRNA levels but that R deletions that would be predicted to leave thepol 5′ splice site intact nevertheless inhibit the production of the spliced pol mRNA. Gag expression can be largely rescued by the introduction of an intron into the 5′ noncoding sequence in place of the R region but not by an intron or any one of several distinct retroviral nuclear RNA export sequences inserted into the mRNA 3′ noncoding sequence. Neither the R element nor the introduced 5′ intron markedly affects the cytoplasmic level of HFV gag mRNA. The poor translational utilization of these cytoplasmic mRNAs when the R region is not present incis also extended to a cat indicator gene linked to an internal ribosome entry site introduced into the 3′ noncoding region. Together these data imply that the HFV R region acts in the nucleus to modify the cytoplasmic fate of target HFV mRNA. The close similarity between the role of the HFV R region revealed in this study and previous data (M. Butsch, S. Hull, Y. Wang, T. M. Roberts, and K. Boris-Lawrie, J. Virol. 73:4847–4855, 1999) demonstrating a critical role for the R region in activating gene expression in the unrelated retrovirus spleen necrosis virus suggests that several distinct retrovirus families may utilize a common yet novel mechanism for the posttranscriptional activation of viral structural protein expression.



1984 ◽  
Vol 81 (15) ◽  
pp. 4617-4621 ◽  
Author(s):  
J. Sodroski ◽  
M. Trus ◽  
D. Perkins ◽  
R. Patarca ◽  
F. Wong-Staal ◽  
...  


1987 ◽  
Vol 7 (2) ◽  
pp. 787-798 ◽  
Author(s):  
L Sealey ◽  
R Chalkley

We used the sensitive gel electrophoresis DNA-binding assay and DNase I footprinting to detect at least two protein factors (EFI and EFII) that bound specifically to the Rous sarcoma virus (RSV) enhancer in vitro. These factors were differentially extracted from quail cell nuclei, recognized different nucleotide sequences in the U3 region of the RSV long terminal repeat, and appeared to bind preferentially to opposite DNA strands as monitored by the DNase I protection assay. The EFI- and EFII-protected regions within U3 corresponded closely to sequences previously demonstrated by deletion mutagenesis to be required for enhancer activity, strongly suggesting a functional significance for these proteins. Only weak homologies between other enhancer consensus sequence motifs and the EFI and EFII recognition sites were observed, and other viral enhancers from simian virus 40 and Moloney murine sarcoma virus did not compete effectively with the RSV enhancer for binding either factor.



1987 ◽  
Vol 7 (2) ◽  
pp. 787-798
Author(s):  
L Sealey ◽  
R Chalkley

We used the sensitive gel electrophoresis DNA-binding assay and DNase I footprinting to detect at least two protein factors (EFI and EFII) that bound specifically to the Rous sarcoma virus (RSV) enhancer in vitro. These factors were differentially extracted from quail cell nuclei, recognized different nucleotide sequences in the U3 region of the RSV long terminal repeat, and appeared to bind preferentially to opposite DNA strands as monitored by the DNase I protection assay. The EFI- and EFII-protected regions within U3 corresponded closely to sequences previously demonstrated by deletion mutagenesis to be required for enhancer activity, strongly suggesting a functional significance for these proteins. Only weak homologies between other enhancer consensus sequence motifs and the EFI and EFII recognition sites were observed, and other viral enhancers from simian virus 40 and Moloney murine sarcoma virus did not compete effectively with the RSV enhancer for binding either factor.



Sign in / Sign up

Export Citation Format

Share Document