reticuloendotheliosis virus
Recently Published Documents


TOTAL DOCUMENTS

321
(FIVE YEARS 36)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Qi Su ◽  
Yawen Zhang ◽  
Zhizhong Cui ◽  
Shuang Chang ◽  
Peng Zhao

Reticuloendotheliosis virus (REV) causes immune-suppression disease in poultry, leading to a significant economic burden worldwide. Recent evidence demonstrated that the REV can enter the semen and then induce artificial insemination, but how the virus gets into semen was little known. Accumulating studies indicated that exosomes serve as vehicles for virus transmission, but the role of exosomes in viral shedding through the semen remains unclear. In this study, exosomes purified from the REV-positive semen were shown with reverse transcription-PCR and mass spectrometry to contain viral genomic RNA and viral proteins, which could also establish productive infections both in vivo and in vitro and escape from the REV-specific neutralizing antibodies. More importantly, compared with the infection caused by free virions, the exosome is more efficient for the virus to ensure effective infection and replication, which can also help the REV compromise the efficacy of the host immune response. In summary, this study demonstrated that semen-derived exosomes can medicate the transmission and immune escape of REV, implicating a novel mechanism for REV entering the semen and leading to vertical transmission.


2021 ◽  
Vol 65 (3) ◽  
Author(s):  
Erik Hofmeister ◽  
Fiona Georgousi ◽  
Melissa Lund ◽  
Pamela J. Ferro ◽  
Joe Flanagan ◽  
...  

2021 ◽  
Author(s):  
Fanfeng Meng ◽  
Zhihao Ren ◽  
Yixin Wang ◽  
Peng Zhao ◽  
Guozhong Zhang

Abstract Background: The use of Reticuloendotheliosis virus (REV) from contaminated live virus vaccine is suspected to be one of the most important causes of massive outbreaks of Reticuloendotheliosis in China. Methods: In this study, we established a droplet digital PCR (ddPCR) detection method for REV and compared its sensitivity to different methods to detect REV contamination in a vaccine. Results: The results indicated that both quantitative PCR and dot-blot methods could detect REV contamination at a dose of 1 TCID50/1,000 feathers, whereas ddPCR could detect REV contamination at a dose of 0.1 TCID50/1,000 feathers, which is 1,000-fold more sensitive than conventional polymerase chain reaction detection (102 TCID50/1000 feathers). ddPCR not only exhibited the highest sensitivity but also proved extremely intuitive, especially to detect REV contamination in vaccines.Conclusions: The ddPCR method established in this study to detect REV contamination in vaccines can effectively detect and quantify low-dose REV contamination. This provides a new method for the rapid detection of REV contamination in various samples, especially vaccines.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dahan Yang ◽  
Xiaoping Lv ◽  
Shujun Zhang ◽  
Shimin Zheng

Reticuloendotheliosis virus (REV) is a type C avian retrovirus that causes immunosuppression, dwarf syndrome, and lymphoma in infected hosts. In this study, we used tandem mass tag (TMT) labeling and liquid chromatography–tandem mass spectrometry (LC-MS/MS) to characterize protein alterations in chicken bursa of Fabricius, before and after REV infection at 7, 14, 21, and 28 days. Our data showed that 1,127, 999, 910, and 1,138 differentially expressed proteins were significantly altered at 7, 14, 21, and 28 days after REV infection, respectively. Morphological analysis showed that REV infection reduced in cortical lymphocytes, bursal follicle atrophy, and nuclear damage. Bioinformatics analysis indicated these proteins were mainly involved with immune responses, energy metabolism, cellular processes, biological regulation, metabolic processes, response to stimuli, and multicellular organismal process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway cluster analysis showed that post-infection, proteins were enriched in the cell cycle, Wnt signaling, antigen processing and presentation, cytokine receptor interaction, adenosine 3′,5′-cyclic monophosphate signaling pathway, and NF-κB signaling. In addition, we observed that peroxiredoxin 4 (PRDX4), peroxiredoxin 6 (PRDX6), glutathione peroxidase 3 (GPX3), catalase (CAT), and peroxidasin (PXDN) were involved in oxidative stress. Some heat shock protein (HSP) family members such as HSPH1, DNAJA4, HSPA8, and HSPA4L also changed significantly after REV infection. These findings help clarify interactions between REV and the host and provides mechanistic insights on REV-induced host immunosuppression.


Sign in / Sign up

Export Citation Format

Share Document