Identification of a TetR family regulator and a polyketide synthase gene cluster involved in growth development and butenyl-spinosyn biosynthesis of Saccharopolyspora pogona

2021 ◽  
Vol 105 (4) ◽  
pp. 1519-1533
Author(s):  
Jie Rang ◽  
Zirong Zhu ◽  
Yunlong Li ◽  
Li Cao ◽  
Haocheng He ◽  
...  
2007 ◽  
Vol 6 (7) ◽  
pp. 1210-1218 ◽  
Author(s):  
Daren W. Brown ◽  
Robert A. E. Butchko ◽  
Mark Busman ◽  
Robert H. Proctor

ABSTRACT Fumonisins are mycotoxins produced by some Fusarium species and can contaminate maize or maize products. Ingestion of fumonisins is associated with diseases, including cancer and neural tube defects, in humans and animals. In fungi, genes involved in the synthesis of mycotoxins and other secondary metabolites are often located adjacent to each other in gene clusters. Such genes can encode structural enzymes, regulatory proteins, and/or proteins that provide self-protection. The fumonisin biosynthetic gene cluster includes 16 genes, none of which appear to play a role in regulation. In this study, we identified a previously undescribed gene (FUM21) located adjacent to the fumonisin polyketide synthase gene, FUM1. The presence of a Zn(II)2Cys6 DNA-binding domain in the predicted protein suggested that FUM21 was involved in transcriptional regulation. FUM21 deletion (Δfum21) mutants produce little to no fumonisin in cracked maize cultures but some FUM1 and FUM8 transcripts in a liquid GYAM medium. Complementation of a Δfum21 mutant with a wild-type copy of the gene restored fumonisin production. Analysis of FUM21 cDNAs identified four alternative splice forms (ASFs), and microarray analysis indicated the ASFs were differentially expressed. Based on these data, we present a model for how FUM21 ASFs may regulate fumonisin biosynthesis.


2016 ◽  
Vol 291 (53) ◽  
pp. 27403-27420 ◽  
Author(s):  
Slavica Janevska ◽  
Birgit Arndt ◽  
Eva-Maria Niehaus ◽  
Immo Burkhardt ◽  
Sarah M. Rösler ◽  
...  

2004 ◽  
Vol 48 (9) ◽  
pp. 3468-3476 ◽  
Author(s):  
Miyuki Otsuka ◽  
Koji Ichinose ◽  
Isao Fujii ◽  
Yutaka Ebizuka

ABSTRACT Neocarzilins (NCZs) are antitumor chlorinated polyenones produced by “Streptomyces carzinostaticus” var. F-41. The gene cluster responsible for the biosynthesis of NCZs was cloned and characterized. DNA sequence analysis of a 33-kb region revealed a cluster of 14 open reading frames (ORFs), three of which (ORF4, ORF5, and ORF6) encode type I polyketide synthase (PKS), which consists of four modules. Unusual features of the modular organization is the lack of an obvious acyltransferase domain on modules 2 and 4 and the presence of longer interdomain regions more than 200 amino acids in length on each module. Involvement of the PKS genes in NCZ biosynthesis was demonstrated by heterologous expression of the cluster in Streptomyces coelicolor CH999, which produced the apparent NCZ biosynthetic intermediates dechloroneocarzillin A and dechloroneocarzilin B. Disruption of ORF5 resulted in a failure of NCZ production, providing further evidence that the cluster is essential for NCZ biosynthesis. Mechanistic consideration of NCZ formation indicates the iterative use of at least one module of the PKS, which subsequently releases its product by decarboxylation to generate an NCZ skeleton, possibly catalyzed by a type II thioesterase encoded by ORF7. This is a novel type I PKS system of bacterial origin for the biosynthesis of a reduced polyketide chain. Additionally, the protein encoded by ORF3, located upstream of the PKS genes, closely resembles the FADH2-dependent halogenases involved in the formation of halometabolites. The ORF3 protein could be responsible for the halogenation of NCZs, presenting a unique example of a halogenase involved in the biosynthesis of an aliphatic halometabolite.


2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Sho Nishimura ◽  
Kazune Nakamura ◽  
Miyako Yamamoto ◽  
Daichi Morita ◽  
Teruo Kuroda ◽  
...  

Information on microbial genome sequences is a powerful resource for accessing natural products with significant activities. We herein report the unveiling of lucensomycin production by Streptomyces achromogenes subsp. streptozoticus NBRC14001 based on the genome sequence of the strain. The genome sequence of strain NBRC14001 revealed the presence of a type I polyketide synthase gene cluster with similarities to a biosynthetic gene cluster for natamycin, which is a polyene macrolide antibiotic that exhibits antifungal activity. Therefore, we investigated whether strain NBRC14001 produces antifungal compound(s) and revealed that an extract from the strain inhibited the growth of Candida albicans. A HPLC analysis of a purified compound exhibiting antifungal activity against C. albicans showed that the compound differed from natamycin. Based on HR-ESI-MS spectrometry and a PubChem database search, the compound was predicted to be lucensomycin, which is a tetraene macrolide antibiotic, and this prediction was supported by the results of a MS/MS analysis. Furthermore, the type I polyketide synthase gene cluster in strain NBRC14001 corresponded well to lucesomycin biosynthetic gene cluster (lcm) in S. cyanogenus, which was very recently reported. Therefore, we concluded that the antifungal compound produced by strain NBRC14001 is lucensomycin.


2011 ◽  
Vol 77 (9) ◽  
pp. 3035-3043 ◽  
Author(s):  
Torsten Bak Regueira ◽  
Kanchana Rueksomtawin Kildegaard ◽  
Bjarne Gram Hansen ◽  
Uffe H. Mortensen ◽  
Christian Hertweck ◽  
...  

ABSTRACTMycophenolic acid (MPA) is the active ingredient in the increasingly important immunosuppressive pharmaceuticals CellCept (Roche) and Myfortic (Novartis). Despite the long history of MPA, the molecular basis for its biosynthesis has remained enigmatic. Here we report the discovery of a polyketide synthase (PKS), MpaC, which we successfully characterized and identified as responsible for MPA production inPenicillium brevicompactum. mpaCresides in what most likely is a 25-kb gene cluster in the genome ofPenicillium brevicompactum. The gene cluster was successfully localized by targeting putative resistance genes, in this case an additional copy of the gene encoding IMP dehydrogenase (IMPDH). We report the cloning, sequencing, and the functional characterization of the MPA biosynthesis gene cluster by deletion of the polyketide synthase genempaCofP. brevicompactumand bioinformatic analyses. As expected, the gene deletion completely abolished MPA production as well as production of several other metabolites derived from the MPA biosynthesis pathway ofP. brevicompactum. Our work sets the stage for engineering the production of MPA and analogues through metabolic engineering.


Sign in / Sign up

Export Citation Format

Share Document